Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
iScience ; 26(10): 107725, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37720089

RESUMEN

Hearing loss is the most common human sensory deficit. Severe-to-complete sensorineural hearing loss is often treated by electrical cochlear implants (eCIs) bypassing dysfunctional or lost hair cells by direct stimulation of the auditory nerve. The wide current spread from each intracochlear electrode array contact activates large sets of tonotopically organized neurons limiting spectral selectivity of sound coding. Despite many efforts, an increase in the number of independent eCI stimulation channels seems impossible to achieve. Light, which can be better confined in space than electric current may help optical cochlear implants (oCIs) to overcome eCI shortcomings. In this review, we present the current state of the optogenetic sound encoding. We highlight optical sound coding strategy development capitalizing on the optical stimulation that requires fine-grained, fast, and power-efficient real-time sound processing controlling dozens of microscale optical emitters as an emerging research area.

2.
Front Neurosci ; 16: 736642, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35356050

RESUMEN

Neuromorphic computer models are used to explain sensory perceptions. Auditory models generate cochleagrams, which resemble the spike distributions in the auditory nerve. Neuron ensembles along the auditory pathway transform sensory inputs step by step and at the end pitch is represented in auditory categorical spaces. In two previous articles in the series on periodicity pitch perception an extended auditory model had been successfully used for explaining periodicity pitch proved for various musical instrument generated tones and sung vowels. In this third part in the series the focus is on octopus cells as they are central sensitivity elements in auditory cognition processes. A powerful numerical model had been devised, in which auditory nerve fibers (ANFs) spike events are the inputs, triggering the impulse responses of the octopus cells. Efficient algorithms are developed and demonstrated to explain the behavior of octopus cells with a focus on a simple event-based hardware implementation of a layer of octopus neurons. The main finding is, that an octopus' cell model in a local receptive field fine-tunes to a specific trajectory by a spike-timing-dependent plasticity (STDP) learning rule with synaptic pre-activation and the dendritic back-propagating signal as post condition. Successful learning explains away the teacher and there is thus no need for a temporally precise control of plasticity that distinguishes between learning and retrieval phases. Pitch learning is cascaded: At first octopus cells respond individually by self-adjustment to specific trajectories in their local receptive fields, then unions of octopus cells are collectively learned for pitch discrimination. Pitch estimation by inter-spike intervals is shown exemplary using two input scenarios: a simple sinus tone and a sung vowel. The model evaluation indicates an improvement in pitch estimation on a fixed time-scale.

3.
Sci Transl Med ; 12(553)2020 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-32718992

RESUMEN

When hearing fails, electrical cochlear implants (eCIs) provide the brain with auditory information. One important bottleneck of CIs is the poor spectral selectivity that results from the wide current spread from each of the electrode contacts. Optical CIs (oCIs) promise to make better use of the tonotopic order of spiral ganglion neurons (SGNs) inside the cochlea by spatially confined stimulation. Here, we established multichannel oCIs based on light-emitting diode (LED) arrays and used them for optical stimulation of channelrhodopsin (ChR)-expressing SGNs in rodents. Power-efficient blue LED chips were integrated onto microfabricated 15-µm-thin polyimide-based carriers comprising interconnecting lines to address individual LEDs by a stationary or mobile driver circuitry. We extensively characterized the optoelectronic, thermal, and mechanical properties of the oCIs and demonstrated stability over weeks in vitro. We then implanted the oCIs into ChR-expressing rats and gerbils, and characterized multichannel optogenetic SGN stimulation by electrophysiological and behavioral experiments. Improved spectral selectivity was directly demonstrated by recordings from the auditory midbrain. Long-term experiments in deafened ChR-expressing rats and in nontreated control animals demonstrated specificity of optogenetic stimulation. Behavioral studies on animals carrying a wireless oCI sound processor revealed auditory percepts. This study demonstrates hearing restoration with improved spectral selectivity by an LED-based multichannel oCI system.


Asunto(s)
Implantación Coclear , Implantes Cocleares , Animales , Vías Auditivas , Estimulación Eléctrica , Optogenética , Ratas , Ganglio Espiral de la Cóclea
4.
Front Neurosci ; 14: 486, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32581672

RESUMEN

This study presents a computational model to reproduce the biological dynamics of "listening to music." A biologically plausible model of periodicity pitch detection is proposed and simulated. Periodicity pitch is computed across a range of the auditory spectrum. Periodicity pitch is detected from subsets of activated auditory nerve fibers (ANFs). These activate connected model octopus cells, which trigger model neurons detecting onsets and offsets; thence model interval-tuned neurons are innervated at the right interval times; and finally, a set of common interval-detecting neurons indicate pitch. Octopus cells rhythmically spike with the pitch periodicity of the sound. Batteries of interval-tuned neurons stopwatch-like measure the inter-spike intervals of the octopus cells by coding interval durations as first spike latencies (FSLs). The FSL-triggered spikes synchronously coincide through a monolayer spiking neural network at the corresponding receiver pitch neurons.

5.
EMBO Mol Med ; 12(8): e12387, 2020 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-32596983

RESUMEN

Electrical cochlear implants (eCIs) partially restore hearing and enable speech comprehension to more than half a million users, thereby re-connecting deaf patients to the auditory scene surrounding them. Yet, eCIs suffer from limited spectral selectivity, resulting from current spread around each electrode contact and causing poor speech recognition in the presence of background noise. Optogenetic stimulation of the auditory nerve might overcome this limitation as light can be conveniently confined in space. Here, we combined virus-mediated optogenetic manipulation of cochlear spiral ganglion neurons (SGNs) and microsystems engineering to establish acute multi-channel optical cochlear implant (oCI) stimulation in adult Mongolian gerbils. oCIs based on 16 microscale thin-film light-emitting diodes (µLEDs) evoked tonotopic activation of the auditory pathway with high spectral selectivity and modest power requirements in hearing and deaf gerbils. These results prove the feasibility of µLED-based oCIs for spectrally selective activation of the auditory nerve.


Asunto(s)
Implantación Coclear , Implantes Cocleares , Cóclea , Nervio Coclear , Humanos , Ganglio Espiral de la Cóclea
6.
Front Neurosci ; 12: 660, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30319340

RESUMEN

Pitch is an essential category for musical sensations. Models of pitch perception are vividly discussed up to date. Most of them rely on definitions of mathematical methods in the spectral or temporal domain. Our proposed pitch perception model is composed of an active auditory model extended by octopus cells. The active auditory model is the same as used in the Stimulation based on Auditory Modeling (SAM), a successful cochlear implant sound processing strategy extended here by modeling the functional behavior of the octopus cells in the ventral cochlear nucleus and by modeling their connections to the auditory nerve fibers (ANFs). The neurophysiological parameterization of the extended model is fully described in the time domain. The model is based on latency-phase en- and decoding as octopus cells are latency-phase rectifiers in their local receptive fields. Pitch is ubiquitously represented by cascaded firing sweeps of octopus cells. Based on the firing patterns of octopus cells, inter-spike interval histograms can be aggregated, in which the place of the global maximum is assumed to encode the pitch.

7.
IEEE Trans Biomed Circuits Syst ; 7(4): 414-25, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23893201

RESUMEN

Mimicking the human ear on the basis of auditory models has become a viable approach in many applications by now. However, only a few attempts have been made to extend the scope of physiological ear models to be employed in cochlear implants (CI). Contemporary CI systems rely on much simpler filter banks and simulate the natural signal processing of a healthy cochlea to only a very limited extent. When looking at rehabilitation outcomes, current systems seem to have reached their peak potential, which signals the need for better algorithms and/or technologies. In this paper, we present a novel sound processing strategy, SAM (Stimulation based on Auditory Modeling), that is based on neurophysiological models of the human ear and can be employed in auditory prostheses. It incorporates active cochlear filtering (basilar membrane and outer hair cells) along with the mechanoelectrical transduction of the inner hair cells, so that several psychoacoustic phenomena are accounted for inherently. Although possible, current implementation does not make use of parallel stimulation of the electrodes, which matches state-of-the-art CI hardware. This paper elaborates on SAM's signal processing and provides a computational evaluation of the strategy. Results show that aspects of normal cochlear processing that are missing in common strategies can be replicated by SAM. This is supposed to improve overall CI user performance, which we have at least partly proven in a pilot study with implantees.


Asunto(s)
Estimulación Acústica , Implantes Cocleares , Audición/fisiología , Modelos Biológicos , Audiometría de Tonos Puros , Electrodos , Humanos , Percepción Sonora/fisiología , Dinámicas no Lineales
8.
Artículo en Inglés | MEDLINE | ID: mdl-18002910

RESUMEN

A physiological and computational model of the human auditory system has been fitted in a signal processing strategy for cochlear implants (CIs). The aim of the new strategy is to obtain more natural sound in CIs by better mimicking the human auditory system. The new strategy was built in three independent stages as proposed in [6]. First a basilar membrane motion model was substituted by the filterbank commonly used in commercial strategies. Second, an inner hair cell model was included in a commercial strategy while maintaining the original filterbank. Third, both the basilar membrane motion and the inner-hair cell model were included in the commercial strategy. This paper analyses the properties and presents results obtained with CI recipients for each algorithm designed.


Asunto(s)
Algoritmos , Membrana Basilar , Implantes Cocleares , Potenciales Evocados Auditivos , Células Ciliadas Auditivas Internas , Modelos Biológicos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...