Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
MicroPubl Biol ; 20222022.
Artículo en Inglés | MEDLINE | ID: mdl-35971405

RESUMEN

This present study uses C. elegans as a model to investigate how sex differences can influence sensory behavior and decision-making when encountering conflicting cues. We use a multi-sensory behavioral assay to characterize the differences between hermaphrodites and male worms when escaping from a food lawn during exposure to repulsive odors, such as, 2-nonanone. We find that male worms show a delayed food leaving during exposure to 2-nonanone when compared to hermaphrodite worms, and this is observed across multiple repulsive cues (2-nonanone and undiluted benzaldehyde) and multiple food types ( E. coli (OP50) and Comamonas sp ). Overall, this study provides a platform to further investigate how sensory-dependent decision-making behavior differs between sexes.

3.
Sci Adv ; 7(34)2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34417172

RESUMEN

Mothers contribute cytoplasmic components to their progeny in a process called maternal provisioning. Provisioning is influenced by the parental environment, but the molecular pathways that transmit environmental cues between generations are not well understood. Here, we show that, in Caenorhabditis elegans, social cues modulate maternal provisioning to regulate gene silencing in offspring. Intergenerational signal transmission depends on a pheromone-sensing neuron and neuronal FMRFamide (Phe-Met-Arg-Phe)-like peptides. Parental FMRFamide-like peptide signaling dampens oxidative stress resistance and promotes the deposition of mRNAs for translational components in progeny, which, in turn, reduces gene silencing. This study identifies a previously unknown pathway for intergenerational communication that links neuronal responses to maternal provisioning. We suggest that loss of social cues in the parental environment represents an adverse environment that stimulates stress responses across generations.

4.
MicroPubl Biol ; 20202020 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-33274318
6.
MicroPubl Biol ; 20202020 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-33274334
7.
PLoS Genet ; 15(3): e1007706, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30849079

RESUMEN

In the natural environment, animals often encounter multiple sensory cues that are simultaneously present. The nervous system integrates the relevant sensory information to generate behavioral responses that have adaptive values. However, the neuronal basis and the modulators that regulate integrated behavioral response to multiple sensory cues are not well defined. Here, we address this question using a behavioral decision in C. elegans when the animal is presented with an attractive food source together with a repulsive odorant. We identify specific sensory neurons, interneurons and neuromodulators that orchestrate the decision-making process, suggesting that various states and contexts may modulate the multisensory integration. Among these modulators, we characterize a new function of a conserved TGF-ß pathway that regulates the integrated decision by inhibiting the signaling from a set of central neurons. Interestingly, we find that a common set of modulators, including the TGF-ß pathway, regulate the integrated response to the pairing of different foods and repellents. Together, our results provide mechanistic insights into the modulatory signals regulating multisensory integration.


Asunto(s)
Caenorhabditis elegans/fisiología , Animales , Animales Modificados Genéticamente , Conducta Animal/fisiología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiología , Alimentos , Genes de Helminto , Interneuronas/fisiología , Cetonas , Mutación , Neuropéptidos/genética , Neuropéptidos/fisiología , Neurotransmisores/fisiología , Odorantes , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/fisiología , Células Receptoras Sensoriales/fisiología , Transducción de Señal , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/fisiología
8.
Cell Rep ; 21(11): 3089-3101, 2017 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-29241538

RESUMEN

Neuromodulatory cells transduce environmental information into long-lasting behavioral responses. However, the mechanisms governing how neuronal cells influence behavioral plasticity are difficult to characterize. Here, we adapted the translating ribosome affinity purification (TRAP) approach in C. elegans to profile ribosome-associated mRNAs from three major tissues and the neuromodulatory dopaminergic and serotonergic cells. We identified elc-2, an Elongin C ortholog, specifically expressed in stress-sensing amphid neuron dual ciliated sensory ending (ADF) serotonergic sensory neurons, and we found that it plays a role in mediating a long-lasting change in serotonin-dependent feeding behavior induced by heat stress. We demonstrate that ELC-2 and the von Hippel-Lindau protein VHL-1, components of an Elongin-Cullin-SOCS box (ECS) E3 ubiquitin ligase, modulate this behavior after experiencing stress. Also, heat stress induces a transient redistribution of ELC-2, becoming more nuclearly enriched. Together, our results demonstrate dynamic regulation of an E3 ligase and a role for an ECS complex in neuromodulation and control of lasting behavioral states.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas Cullin/genética , Elonguina/genética , Genoma , Proteínas Supresoras de la Señalización de Citocinas/genética , Ubiquitina-Proteína Ligasas/genética , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Cullin/metabolismo , Neuronas Dopaminérgicas/citología , Neuronas Dopaminérgicas/metabolismo , Elonguina/metabolismo , Conducta Alimentaria/fisiología , Edición Génica , Regulación de la Expresión Génica , Respuesta al Choque Térmico/genética , Calor , Humanos , Larva/genética , Larva/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Neuronas Serotoninérgicas/citología , Neuronas Serotoninérgicas/metabolismo , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Transcriptoma , Ubiquitina-Proteína Ligasas/metabolismo
9.
Curr Opin Neurobiol ; 43: 110-118, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28273525

RESUMEN

Multisensory integration is a neural process by which signals from two or more distinct sensory channels are simultaneously processed to form a more coherent representation of the environment. Multisensory integration, especially when combined with a survey of internal states, provides selective advantages for animals navigating complex environments. Despite appreciation of the importance of multisensory integration in behavior, the underlying molecular and cellular mechanisms remain poorly understood. Recent work looking at how Caenorhabditis elegans makes multisensory decisions has yielded mechanistic insights into how a relatively simple and well-defined nervous system employs circuit motifs of defined features, synaptic signals and extrasynaptic neurotransmission, as well as neuromodulators in processing and integrating multiple sensory inputs to generate flexible and adaptive behavioral outputs.


Asunto(s)
Caenorhabditis elegans/fisiología , Sensación/fisiología , Animales , Conducta Animal/fisiología , Transmisión Sináptica/fisiología
10.
Elife ; 52016 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-27138642

RESUMEN

As a common neurotransmitter in the nervous system, γ-aminobutyric acid (GABA) modulates locomotory patterns in both vertebrates and invertebrates. However, the signaling mechanisms underlying the behavioral effects of GABAergic modulation are not completely understood. Here, we demonstrate that a GABAergic signal in C. elegans modulates the amplitude of undulatory head bending through extrasynaptic neurotransmission and conserved metabotropic receptors. We show that the GABAergic RME head motor neurons generate undulatory activity patterns that correlate with head bending and the activity of RME causally links with head bending amplitude. The undulatory activity of RME is regulated by a pair of cholinergic head motor neurons SMD, which facilitate head bending, and inhibits SMD to limit head bending. The extrasynaptic neurotransmission between SMD and RME provides a gain control system to set head bending amplitude to a value correlated with optimal efficiency of forward movement.


Asunto(s)
Caenorhabditis elegans/fisiología , Neuronas Colinérgicas/metabolismo , GABAérgicos/metabolismo , Neuronas GABAérgicas/metabolismo , Locomoción , Neuronas Motoras/fisiología , Animales , Receptores de Glutamato Metabotrópico/metabolismo
11.
J Neurosci ; 35(28): 10331-42, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-26180208

RESUMEN

Sensory inputs are integrated extensively before decision making, with altered multisensory integration being associated with disorders such as autism. We demonstrate that the two C. elegans AIB interneurons function as a biphasic switch, integrating antagonistic, tonic, and acute inputs from three distinct pairs of sensory neurons to modulate nociception. Off food, animals reverse away from a noxious stimulus. In contrast, on food or serotonin, AIB signaling is inhibited and, although animals initiate an aversive response more rapidly, they continue forward after the initial backward locomotion is complete. That is, animals continue to move forward and feed even when presented with a noxious repellant, with AIB inhibition decreasing the repellant concentration evoking a maximal response. These studies demonstrate that the AIBs serve as an integrating hub, receiving inputs from different sensory neurons to modulate locomotory decision making differentially, and highlight the utility of this model to analyze the complexities of multisensory integration. SIGNIFICANCE STATEMENT: Dysfunctional sensory signaling and perception are associated with a number of disease states, including autism spectrum disorders, schizophrenia, and anxiety. We have used the C. elegans model to examine multisensory integration at the interneuron level to better understand the modulation of this complex, multicomponent process. C. elegans responds to a repulsive odorant by first backing up and then either continuing forward or turning and moving away from the odorant. This decision-making process is modulated extensively by the activity state of the two AIB interneurons, with the AIBs integrating an array of synergistic and antagonistic glutamatergic inputs, from sensory neurons responding directly to the odorant to others responding to a host of additional environmental variables to ultimately fine tune aversive behaviors.


Asunto(s)
Reacción de Fuga/fisiología , Interneuronas/fisiología , Nocicepción/fisiología , Células Receptoras Sensoriales/fisiología , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Calcio , Reacción de Fuga/efectos de los fármacos , Ácido Glutámico/farmacología , Interneuronas/efectos de los fármacos , Nocicepción/efectos de los fármacos , Odorantes , Técnicas de Placa-Clamp , Estimulación Física/efectos adversos , Células Receptoras Sensoriales/efectos de los fármacos
12.
J Neurosci ; 34(28): 9389-403, 2014 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-25009271

RESUMEN

Food is critical for survival. Many animals, including the nematode Caenorhabditis elegans, use sensorimotor systems to detect and locate preferred food sources. However, the signaling mechanisms underlying food-choice behaviors are poorly understood. Here, we characterize the molecular signaling that regulates recognition and preference between different food odors in C. elegans. We show that the major olfactory sensory neurons, AWB and AWC, play essential roles in this behavior. A canonical Gα-protein, together with guanylate cyclases and cGMP-gated channels, is needed for the recognition of food odors. The food-odor-evoked signal is transmitted via glutamatergic neurotransmission from AWC and through AMPA and kainate-like glutamate receptor subunits. In contrast, peptidergic signaling is required to generate preference between different food odors while being dispensable for the recognition of the odors. We show that this regulation is achieved by the neuropeptide NLP-9 produced in AWB, which acts with its putative receptor NPR-18, and by the neuropeptide NLP-1 produced in AWC. In addition, another set of sensory neurons inhibits food-odor preference. These mechanistic logics, together with a previously mapped neural circuit underlying food-odor preference, provide a functional network linking sensory response, transduction, and downstream receptors to process complex olfactory information and generate the appropriate behavioral decision essential for survival.


Asunto(s)
Preferencias Alimentarias/fisiología , Red Nerviosa/fisiología , Odorantes , Neuronas Receptoras Olfatorias/fisiología , Reconocimiento en Psicología/fisiología , Olfato/fisiología , Transmisión Sináptica/fisiología , Animales , Caenorhabditis elegans , Alimentos/clasificación
13.
Curr Opin Neurobiol ; 29: 17-24, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24811318

RESUMEN

Caenorhabditis elegans navigates sensory landscapes by integrating inputs from 14 pairs of polymodal sensory neurons. Sensory neurons interact synaptically and through gap junction networks and are modulated by complex local/humoral, nutritionally dependent, monoaminergic and peptidergic signaling cascades that dynamically reconfigure individual sensory-mediated locomotory circuits. Monoaminergic/peptidergic signaling modifies the sensory signal by providing, first, feedback loops between sensory neurons and postsynaptic partners to fine tune inputs, second, crosstalk between sensory neurons to integrate responses and third, local/humoral extrasynaptic signals to facilitate broader, long term system-wide modulation. Overall, these observations highlight the differences between an anatomical wiring diagram and 'functional connectomes' that are essential to generate the alternative circuit configurations required to choose different behavioral outcomes in the face of changing environmental inputs.


Asunto(s)
Red Nerviosa/fisiología , Sensación/fisiología , Células Receptoras Sensoriales/fisiología , Transmisión Sináptica/fisiología , Animales , Monoaminas Biogénicas/metabolismo , Caenorhabditis elegans , Retroalimentación Sensorial/fisiología , Neuropéptidos/genética , Neuropéptidos/metabolismo , Transducción de Señal
14.
Worm ; 1(4): 202-6, 2012 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-24058849

RESUMEN

Octopamine (OA) appears to function as the invertebrate counterpart of norepinephrine (NE) in the modulation of a number of key behaviors. In C. elegans, OA signaling is complex, mediated by at least three distinct α-adrenergic-like receptors and appears to activate more global peptidergic signaling cascades that have the potential to dramatically amplify the octopaminergic signal. These OA-dependent peptidergic signaling cascades involve an array of neuropeptides that activate receptors throughout the nervous system and have the potential to both directly and indirectly modulate locomotory decision-making. In this commentary we highlight the use of C. elegans as a model to expand our understanding of noradrenergic signaling in mammals, specifically as it relates to the role of NE in anti-nociception.

15.
EMBO J ; 31(3): 667-78, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22124329

RESUMEN

Pain modulation is complex, but noradrenergic signalling promotes anti-nociception, with α(2)-adrenergic agonists used clinically. To better understand the noradrenergic/peptidergic modulation of nociception, we examined the octopaminergic inhibition of aversive behaviour initiated by the Caenorhabditis elegans nociceptive ASH sensory neurons. Octopamine (OA), the invertebrate counterpart of norepinephrine, modulates sensory-mediated reversal through three α-adrenergic-like OA receptors. OCTR-1 and SER-3 antagonistically modulate ASH signalling directly, with OCTR-1 signalling mediated by Gα(o). In contrast, SER-6 inhibits aversive responses by stimulating the release of an array of 'inhibitory' neuropeptides that activate receptors on sensory neurons mediating attraction or repulsion, suggesting that peptidergic signalling may integrate multiple sensory inputs to modulate locomotory transitions. These studies highlight the complexity of octopaminergic/peptidergic interactions, the role of OA in activating global peptidergic signalling cascades and the similarities of this modulatory network to the noradrenergic inhibition of nociception in mammals, where norepinephrine suppresses chronic pain through inhibitory α(2)-adrenoreceptors on afferent nociceptors and stimulatory α(1)-receptors on inhibitory peptidergic interneurons.


Asunto(s)
Reacción de Prevención , Monoaminas Biogénicas/metabolismo , Caenorhabditis elegans/fisiología , Neuropéptidos/metabolismo , 1-Octanol/farmacología , Animales , Animales Modificados Genéticamente , Proteínas de Unión al GTP/metabolismo , Reacción en Cadena de la Polimerasa , Serotonina/farmacología , Transducción de Señal , Xenopus laevis
16.
Invert Neurosci ; 12(1): 53-61, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22143253

RESUMEN

Monoamines and neuropeptides interact to modulate key behaviors in most organisms. This review is focused on the interaction between octopamine (OA) and an array of neuropeptides in the inhibition of a simple, sensory-mediated aversive behavior in the C. elegans model system and describes the role of monoamines in the activation of global peptidergic signaling cascades. OA has been often considered the invertebrate counterpart of norepinephrine, and the review also highlights the similarities between OA inhibition in C. elegans and the noradrenergic modulation of pain in higher organisms.


Asunto(s)
Dolor Crónico/metabolismo , Modelos Animales de Enfermedad , Neuropéptidos/metabolismo , Octopamina/metabolismo , Transducción de Señal/fisiología , Animales , Conducta Animal , Monoaminas Biogénicas/metabolismo , Caenorhabditis elegans/metabolismo , Dolor Crónico/fisiopatología , Nocicepción/fisiología
17.
PLoS One ; 6(7): e21897, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21814562

RESUMEN

Nutritional state often modulates olfaction and in Caenorhabditis elegans food stimulates aversive responses mediated by the nociceptive ASH sensory neurons. In the present study, we have characterized the role of key serotonergic neurons that differentially modulate aversive behavior in response to changing nutritional status. The serotonergic NSM and ADF neurons play antagonistic roles in food stimulation. NSM 5-HT activates SER-5 on the ASHs and SER-1 on the RIA interneurons and stimulates aversive responses, suggesting that food-dependent serotonergic stimulation involves local changes in 5-HT levels mediated by extrasynaptic 5-HT receptors. In contrast, ADF 5-HT activates SER-1 on the octopaminergic RIC interneurons to inhibit food-stimulation, suggesting neuron-specific stimulatory and inhibitory roles for SER-1 signaling. Both the NSMs and ADFs express INS-1, an insulin-like peptide, that appears to cell autonomously inhibit serotonergic signaling. Food also modulates directional decisions after reversal is complete, through the same serotonergic neurons and receptors involved in the initiation of reversal, and the decision to continue forward or change direction after reversal is dictated entirely by nutritional state. These results highlight the complexity of the "food signal" and serotonergic signaling in the modulation of sensory-mediated aversive behaviors.


Asunto(s)
Conducta Animal/fisiología , Dieta , Interneuronas/metabolismo , Nociceptores/metabolismo , Células Receptoras Sensoriales/metabolismo , Neuronas Serotoninérgicas/metabolismo , Serotonina/metabolismo , Animales , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/fisiología , Insulina/metabolismo , Transducción de Señal
18.
J Neurosci ; 30(23): 7889-99, 2010 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-20534837

RESUMEN

Monoamines and neuropeptides interact to modulate behavioral plasticity in both vertebrates and invertebrates. In Caenorhabditis elegans behavioral state or "mood" is dependent on food availability and is translated by both monoaminergic and peptidergic signaling in the fine-tuning of most behaviors. In the present study, we have examined the interaction of monoamines and peptides on C. elegans aversive behavior mediated by a pair of polymodal, nociceptive, ASH sensory neurons. Food or serotonin sensitize the ASHs and stimulate aversive responses through a pathway requiring the release of nlp-3-encoded neuropeptides from the ASHs. Peptides encoded by nlp-3 appear to stimulate ASH-mediated aversive behavior through the neuropeptide receptor-17 (NPR-17) receptor. nlp-3- and npr-17-null animals exhibit identical phenotypes and animals overexpressing either nlp-3 or npr-17 exhibit elevated aversive responses off food that are absent when nlp-3 or npr-17 are overexpressed in npr-17- or nlp-3-null animals, respectively. ASH-mediated aversive responses are increased by activating either Galpha(q) or Galpha(s) in the ASHs, with Galpha(s) signaling specifically stimulating the release of nlp-3-encoded peptides. In contrast, octopamine appears to inhibit 5-HT stimulation by activating Galpha(o) signaling in the ASHs that, in turn, inhibits both Galpha(s) and Galpha(q) signaling and the release of nlp-3-encoded peptides. These results demonstrate that serotonin and octopamine reversibly modulate the activity of the ASHs, and highlight the utility of the C. elegans model for defining interactions between monoamines and peptides in individual neurons of complex sensory-mediated circuits.


Asunto(s)
Monoaminas Biogénicas/fisiología , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Neuropéptidos/metabolismo , Nociceptores/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Reacción de Prevención/efectos de los fármacos , Reacción de Prevención/fisiología , Monoaminas Biogénicas/metabolismo , Caenorhabditis elegans/citología , Caenorhabditis elegans/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Nociceptores/efectos de los fármacos , Octanoles/efectos adversos , Octopamina/farmacología , Serotonina/farmacología
19.
J Neurosci ; 29(5): 1446-56, 2009 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-19193891

RESUMEN

Serotonin modulates behavioral plasticity in both vertebrates and invertebrates and in Caenorhabditis elegans regulates key behaviors, including locomotion, aversive learning and olfaction through at least four different 5-HT receptors. In the present study, we examined the serotonergic stimulation of aversive responses to dilute octanol in animals containing null alleles of these 5-HT receptors. Both ser-1 and mod-1 null animals failed to increase sensitivity to dilute octanol on food/5-HT, in contrast to wild-type, ser-4 or ser-7 null animals. 5-HT sensitivity was restored by the expression of MOD-1 and SER-1 in the AIB or potentially the AIY, and RIA interneurons of mod-1 and ser-1 null animals, respectively. Because none of these 5-HT receptors appear to be expressed in the ASH sensory neurons mediating octanol sensitivity, we identified a 5-HT(6)-like receptor, F16D3.7(SER-5), that was required for food/5-HT-dependent increases in octanol sensitivity. ser-5 null animals failed to increase octanol sensitivity in the presence of food/5-HT and sensitivity could be restored by expression of SER-5 in the ASHs. Similarly, the RNAi knockdown of ser-5 expression in the ASHs of wild-type animals also abolished 5-HT-dependent increases in octanol sensitivity, suggesting that SER-5 modulates the octanol responsiveness of the ASHs directly. Together, these results suggest that multiple amine receptors, functioning at different levels within the locomotory circuit, are each essential for the serotonergic modulation of ASH-mediated aversive responses.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Células Quimiorreceptoras/fisiología , Actividad Motora/fisiología , Red Nerviosa/fisiología , Receptores de Serotonina/fisiología , Serotonina/fisiología , 1-Octanol/farmacología , Secuencia de Aminoácidos , Animales , Células COS , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Células Cultivadas , Canales de Cloruro/genética , Canales de Cloruro/fisiología , Chlorocebus aethiops , Técnicas de Silenciamiento del Gen/métodos , Interneuronas/fisiología , Datos de Secuencia Molecular , Actividad Motora/genética , Receptores de Serotonina/genética , Receptores de Serotonina 5-HT2/genética , Receptores de Serotonina 5-HT2/fisiología , Serotonina/deficiencia , Serotonina/genética , Transducción de Señal/fisiología
20.
Genetics ; 181(1): 153-63, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19001289

RESUMEN

Serotonin (5-HT) regulates key processes in both vertebrates and invertebrates. Previously, four 5-HT receptors that contributed to the 5-HT modulation of egg laying were identified in Caenorhabditis elegans. Therefore, to assess potential receptor interactions, we generated animals containing combinations of null alleles for each receptor, especially animals expressing only individual 5-HT receptors. 5-HT-stimulated egg laying and egg retention correlated well with different combinations of predicted excitatory and inhibitory serotonergic inputs. For example, 5-HT did not stimulate egg laying in ser-1, ser-7, or ser-7 ser-1 null animals, and ser-7 ser-1 animals retained more eggs than wild-type animals. In contrast, 5-HT-stimulated egg laying in ser-4;mod-1 animals was greater than in wild-type animals, and ser-4;mod-1 animals retained fewer eggs than wild-type animals. Surprisingly, ser-4;mod-1;ser-7 ser-1 animals retained the same number of eggs as wild-type animals and exhibited significant 5-HT-stimulated egg laying that was dependent on a previously uncharacterized receptor, SER-5. 5-HT-stimulated egg laying was absent in ser-5;ser-4;mod-1;ser-7 ser-1 animals, and these animals retained more eggs than either wild-type or ser-4;mod-1;ser-7 ser-1 animals. The 5-HT sensitivity of egg laying could be restored by ser-5 muscle expression. Together, these results highlight the dual excitatory/inhibitory serotonergic inputs that combine to modulate egg laying.


Asunto(s)
Caenorhabditis elegans/fisiología , Oviposición/fisiología , Serotonina/metabolismo , Transducción de Señal , Secuencia de Aminoácidos , Animales , Caenorhabditis elegans/efectos de los fármacos , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Femenino , Locomoción/efectos de los fármacos , Modelos Biológicos , Datos de Secuencia Molecular , Músculos/efectos de los fármacos , Músculos/metabolismo , Mutación/genética , Oviposición/efectos de los fármacos , Filogenia , Receptores de Serotonina/química , Serotonina/farmacología , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA