Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chem Mater ; 35(5): 1858-1867, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36936177

RESUMEN

A family of boron nitride (BN)-based photocatalysts for solar fuel syntheses have recently emerged. Studies have shown that oxygen doping, leading to boron oxynitride (BNO), can extend light absorption to the visible range. However, the fundamental question surrounding the origin of enhanced light harvesting and the role of specific chemical states of oxygen in BNO photochemistry remains unanswered. Here, using an integrated experimental and first-principles-based computational approach, we demonstrate that paramagnetic isolated OB3 states are paramount to inducing prominent red-shifted light absorption. Conversely, we highlight the diamagnetic nature of O-B-O states, which are shown to cause undesired larger band gaps and impaired photochemistry. This study elucidates the importance of paramagnetism in BNO semiconductors and provides fundamental insight into its photophysics. The work herein paves the way for tailoring of its optoelectronic and photochemical properties for solar fuel synthesis.

2.
Phys Chem Chem Phys ; 25(8): 5989-6001, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36752175

RESUMEN

Understanding hydrogen-metal interactions is important in various fields of surface science, including the aqueous corrosion of metals. The interaction between atomic H and a Mg surface is a key process for the formation of sub-surface Mg hydride, which may play an important role in Mg aqueous corrosion. In the present work, we performed first-principles Density Functional Theory (DFT) calculations to study the mechanisms for hydrogen adsorption and crystalline Mg hydride formation under aqueous conditions. The Electron Localisation Function (ELF) is found to be a promising indicator for predicting stable H adsorption in the Mg surface. It is found that H adsorption and hydride layer formation is dominated by high ELF adsorption sites. Our calculations suggest that the on-surface adsorption of atomic H, OH radicals and atomic O could enhance the electron localisation at specific sites in the sub-surface region, thus forming effective H traps locally. This is predicted to result in the formation of a thermodynamically stable sub-surface hydride layer, which is a potential precursor of the crucial hydride corrosion product of magnesium.

3.
ACS Appl Mater Interfaces ; 14(50): 56331-56343, 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36480491

RESUMEN

Well designed and optimized epitaxial heterostructures lie at the foundation of materials development for photovoltaic, photocatalytic, and photoelectrochemistry applications. Heterostructure materials offer tunable control over charge separation and transport at the same time preventing recombination of photogenerated excitations at the interface. Thus, it is of paramount importance that a detailed understanding is developed as the basis for further optimization strategies and design. Oxides of copper are nontoxic, low cost, abundant materials with a straightforward and stable manufacturing process. However, in individual applications, they suffer from inefficient charge transport of photogenerated carriers. Hence, in this work, we investigate the role of the interface between epitaxially aligned CuO and Cu2O to explore the potential benefits of such an architecture for more efficient electron and hole transfer. The CuO/Cu2O heterojunction nature, stability, bonding mechanism, interface dipole, electronic structure, and band bending were rationalized using hybrid density functional theory calculations. New electronic states are identified at the interface itself, which are originating neither from lattice mismatch nor strained Cu-O bonds. They form as a result of a change in coordination environment of CuO surface Cu2+ cations and an electron transfer across the interface Cu1+-O bond. The first process creates occupied defect-like electronic states above the valence band, while the second leaves hole states below the conduction band. These are constitutional to the interface and are highly likely to contribute to recombination effects competing with the improved charged separation from the suitable band bending and alignment and thus would limit the expected output photocurrent and photovoltage. Finally, a favorable effect of interstitial oxygen defects has been shown to allow for band gap tunability at the interface but only to the point of the integral geometrical contact limit of the heterostructure itself.

4.
J Phys Chem C Nanomater Interfaces ; 126(45): 19435-19445, 2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36424998

RESUMEN

The electronic and spintronic properties of the monovacancies in freestanding and isotopically compressed graphene are investigated using hybrid exchange density functional perturbation theory. When the effects of electronic self-interaction are taken into account, an integer magnetic moment of 2 µB is identified for a Jahn-Teller reconstructed V1(5-9) monovacancy in freestanding graphene. For graphene with stable ripples induced by a compressive strain of 5%, a bond reconstruction produces a V1(55-66) structure for the monovacancy, which is localized at the saddle points of the ripple. The sizeable local distortion induced by reconstruction modifies both the geometric and electronic properties of rippled graphene and quenches the magnetic moment of the vacancy due to the sp3 hybridization of the central atom. The nonmagnetic V1(55-66) structure is found to be stable on rippled structures, with the formation energy ∼2.3 eV lower than that of the metastable distorted V1(5-9) structures localized at sites other than the saddle points. The electronic ground state of distorted V1(5-9) corresponds to a wide range of fractional magnetic moments (0.50-1.25 µB). The computed relative stabilities and the electronic and magnetic properties of the V1(5-9) structures are found to be closely related to their local distortions. This analysis of the fundamental properties of defective graphene under compression suggests a number of strategies for generating regular defect patterns with tuneable magnetic and electronic properties and may, therefore, be used as a novel technique to achieve more precise control of graphene electronic structure for various application scenarios such as transistors, strain sensors, and directed chemisorption.

5.
Phys Chem Chem Phys ; 24(27): 16545-16555, 2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35766802

RESUMEN

Surface adsorption is one of the fundamental processes in numerous fields, including catalysis, the environment, energy and medicine. The development of an adsorption model which provides an effective prediction of binding energy in minutes has been a long term goal in surface and interface science. The solution has been elusive as identifying the intrinsic determinants of the adsorption energy for various compositions, structures and environments is non-trivial. We introduce a new and flexible model for predicting adsorption energies to metal substrates. The model is based on easily computed, intrinsic properties of the substrate and adsorbate, which are the same for all the considered systems. It is parameterised using machine learning based on first-principles calculations of probe molecules (e.g., H2O, CO2, O2, N2) adsorbed to a range of pure metal substrates. The model predicts the computed dissociative adsorption energy to metal surfaces with a correlation coefficient of 0.93 and a mean absolute error of 0.77 eV for the large database of molecular adsorption energies provided by Catalysis-Hub.org which have a range of 15 eV. As the model is based on pre-computed quantities it provides near-instantaneous estimates of adsorption energies and it is sufficiently accurate to eliminate around 90% of candidates in screening study of new adsorbates. The model, therefore, significantly enhances current efforts to identify new molecular coatings in many applied research fields.

6.
Faraday Discuss ; 236(0): 374-388, 2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-35506395

RESUMEN

In many engineering scenarios, surface-active organic species are added to acidic solutions to inhibit the corrosion of metallic components. Given suitable selection, such corrosion inhibitors are highly effective, preventing significant degradation even in highly aggressive environments. Nevertheless, there are still considerable gaps in fundamental knowledge of corrosion inhibitor functionality, severely restricting rational development. Here, we demonstrate the capability of X-ray photoelectron spectroscopy (XPS), supported by ab initio modelling, for revealing key details of inhibited substrates. Attention is focussed on the corrosion inhibition of carbon steel through the addition of an exemplar imidazoline-based corrosion inhibitor (OMID) to aqueous solutions of both HCl and H2SO4. Most notably, it is demonstrated that interfacial chemistry varies with the identity of the acid. High resolution Fe 2p, O 1s, N 1s, and Cl 2p XPS spectra, acquired from well-inhibited carbon steel in 1 M HCl, show that there are two different singly protonated OMID species bound directly to the metallic carbon steel substrate. In sharp contrast, in 0.01 M H2SO4, OMID adsorbs onto an ultra-thin surface film, composed primarily of a ferric sulfate (Fe2(SO4)3)-like phase. Such insight is essential to efforts to develop a mechanistic description of corrosion inhibitor functionality, as well as knowledge-based identification of next generation corrosion inhibitors.

7.
ACS Omega ; 7(9): 7531-7540, 2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35284742

RESUMEN

The effect of zeolite pore geometry and intrinsic acidity on the activation energy of propane monomolecular cracking was investigated for six topologically distinct zeolites with different pore sizes. Periodic density functional theory calculations were used to calculate the activation energy, while cluster models were used to calculate deprotonation energies. The computed intrinsic activation energies showed a smaller variation with topology than the adsorption energies. No correlation was found between the computed deprotonation and ammonia adsorption energies at the acid site and the intrinsic activation energy. Detailed analysis of the computed structures and properties suggests that acid sites with different pore topologies impose geometrical constraints on the ion-pair formed by the ammonium molecule, which differs significantly from those that affect the propane reaction.

8.
J Chem Phys ; 152(20): 204111, 2020 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-32486670

RESUMEN

CRYSTAL is a periodic ab initio code that uses a Gaussian-type basis set to express crystalline orbitals (i.e., Bloch functions). The use of atom-centered basis functions allows treating 3D (crystals), 2D (slabs), 1D (polymers), and 0D (molecules) systems on the same grounds. In turn, all-electron calculations are inherently permitted along with pseudopotential strategies. A variety of density functionals are implemented, including global and range-separated hybrids of various natures and, as an extreme case, Hartree-Fock (HF). The cost for HF or hybrids is only about 3-5 times higher than when using the local density approximation or the generalized gradient approximation. Symmetry is fully exploited at all steps of the calculation. Many tools are available to modify the structure as given in input and simplify the construction of complicated objects, such as slabs, nanotubes, molecules, and clusters. Many tensorial properties can be evaluated by using a single input keyword: elastic, piezoelectric, photoelastic, dielectric, first and second hyperpolarizabilities, etc. The calculation of infrared and Raman spectra is available, and the intensities are computed analytically. Automated tools are available for the generation of the relevant configurations of solid solutions and/or disordered systems. Three versions of the code exist: serial, parallel, and massive-parallel. In the second one, the most relevant matrices are duplicated on each core, whereas in the third one, the Fock matrix is distributed for diagonalization. All the relevant vectors are dynamically allocated and deallocated after use, making the code very agile. CRYSTAL can be used efficiently on high performance computing machines up to thousands of cores.

9.
ACS Appl Mater Interfaces ; 11(36): 33435-33441, 2019 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-31425649

RESUMEN

Despite intensive study over many years, the chemistry and physics of the atomic level mechanisms that govern corrosion are not fully understood. In particular, the occurrence and severity of highly localized metal degradation cannot currently be predicted and often cannot be rationalized in failure analysis. We report a first-principles model of the nature of protective iron carbonate films coupled with a detailed chemical and physical characterization of such a film in a carefully controlled environment. The fundamental building blocks of the protective film, siderite (FeCO3) crystallites, are found to be very sensitive to the growth environment. In iron-rich conditions, cylindrical crystallites form that are highly likely to be more susceptible to chemical attack and dissolution than the rhombohedral crystallites formed in iron-poor conditions. This suggests that local degradation of metal surfaces is influenced by structures that form during early growth and provides new avenues for the prevention, detection, and mitigation of carbon steel corrosion.

10.
Front Chem ; 7: 220, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31106189

RESUMEN

Anatase TiO2 provides photoactivity with high chemical stability at a reasonable cost. Different methods have been used to enhance its photocatalytic activity by creating band gap states through the introduction of oxygen vacancies, hydrogen impurities, or the adorption of phthalocyanines, which are usually employed as organic dyes in dye-sensitized solar cells. Predicting how these interactions affect the electronic structure of anatase requires an efficient and robust theory. In order to document the efficiency and accuracy of commonly used approaches we have considered two widely used implementations of density functional theory (DFT), namely the all-electron linear combination of atomic orbitals (AE-LCAO) and the pseudo-potential plane waves (PP-PW) approaches, to calculate the properties of the stoichiometric and defective anatase TiO2 (101) surface. Hybrid functionals, and in particular HSE, lead to a computed band gap in agreement with that measured by using UV adsorption spectroscopy. When using PBE+U, the gap is underestimated by 20 % but the computed position of defect induced gap states relative to the conduction band minimum (CBM) are found to be in good agreement with those calculated using hybrid functionals. These results allow us to conclude that hybrid functionals based on the use of AE-LCAO provide an efficient and robust approach for predicting trends in the band gap and the position of gap states in large model systems. We extend this analysis to surface adsorption and use the AE-LCAO approach with the hybrid functional HSED3 to study the adsorption of the phthalocyanine H2Pc on anatase (101). Our results suggest that H2Pc prefers to be adsorbed on the surface Ti5c rows of anatase (101), in agreement with that seen in recent STM experiments on rutile (110).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA