Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 26(32): 21395-21406, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39078376

RESUMEN

The bonding structures of CO3Li3+ and CS3Li3+ are studied by means of oriented quasi-atomic orbitals (QUAOs) to assess the possibility of these molecules being planar hexacoordinated carbon (phC) systems. CH3Li and CO32- are employed as reference molecules. It is found that the introduction of Li+ ions into the molecular environment of carbonate has a greater effect on the orbital structure of the O atoms than it does on the C atom. Partial charges computed from QUAO populations imply repulsion between the positively charged C and Li atoms in CO3Li3+. Upon the transition from CO3Li3+ to CS3Li3+, the analysis reveals that the substitution of O atoms by S atoms inverts the polarity of the carbon-chalcogen σ bond. This is linked to the difference in s- and p-fractions of the QUAOs of C and S, as element electronegativities do not explain the observed polarity of the CSσ bond. Partial charges indicate that the larger electron population on the C atom in CS3Li3+ makes C-Li attraction possible. Upon comparison with the C-Li bond in methyllithium, it is found that the C-Li covalent interactions in CO3Li3+ and CS3Li3+ have about 14% and 6% of the strength of the C-Li covalent interaction in CH3Li, respectively. Consequently, it is concluded that only CS3Li3+ may be considered to be a phC system.

2.
Phys Chem Chem Phys ; 26(32): 21407-21418, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39081231

RESUMEN

The bonding structures of infinitene, the Chemical and Engineering News 2021 Molecule of the Year, is studied by means of oriented quasi-atomic orbitals (QUAOs) to assess the degree of aromaticity within the molecule. It is found that the angularity introduced into infinitene when it takes on the helical shape of the infinity symbol has a profound effect on bond order, delocalization of bonding interactions, and the aromatic character of the system. In kekulene, a planar isomer of infinitene, the bonding analysis shows fluctuations of pocketed delocalization of bonding interactions in π-sextets associated with Clar's rule. Conversely, much smaller fluctuations are observed between the adjacent rings of infinitene. The observations drawn from the quasi-atomic bonding analysis support the idea that there is aromatic character across the entire infinitene molecule, not just localized around individual rings as in kekulene.

3.
J Chem Theory Comput ; 19(20): 7031-7055, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37793073

RESUMEN

The primary focus of GAMESS over the last 5 years has been the development of new high-performance codes that are able to take effective and efficient advantage of the most advanced computer architectures, both CPU and accelerators. These efforts include employing density fitting and fragmentation methods to reduce the high scaling of well-correlated (e.g., coupled-cluster) methods as well as developing novel codes that can take optimal advantage of graphical processing units and other modern accelerators. Because accurate wave functions can be very complex, an important new functionality in GAMESS is the quasi-atomic orbital analysis, an unbiased approach to the understanding of covalent bonds embedded in the wave function. Best practices for the maintenance and distribution of GAMESS are also discussed.

4.
J Chem Phys ; 156(17): 174302, 2022 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-35525666

RESUMEN

The quasi-atomic orbital (QUAO) bonding analysis is used to study intramolecular hydrogen bonding (IMHB) in salicylic acid and an intermediate that is crucial to the synthesis of aspirin. The bonding analysis rigorously explores IMHB through directly accessing information that is intrinsic to the molecular wave function, thereby bypassing the need for intrinsically biased methods. The variables that affect the strength of IMHB are determined using kinetic bond orders, QUAO populations, and QUAO hybridizations. Important properties include both the interatomic distance between hydrogen and oxygen participating in the IMHB and the hybridization on the oxygen. The bonding analysis further shows that each intramolecular hydrogen bond is a four-electron three-center bond. The bonding analysis is used to understand how aromatic reactivity changes due to the effect of functional groups on the aromatic ring.

5.
J Chem Theory Comput ; 17(11): 6910-6917, 2021 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-34699218

RESUMEN

The time to solution and parallel efficiency of several commonly used electronic structure methods (Hartree-Fock, density functional theory, second order perturbation theory, resolution of the identity second order perturbation theory, coupled cluster) are evaluated on both the Intel Xeon Haswell and the Intel Xeon Phi Knights Landing (KNL) architectures. The Haswell completes the benchmark calculations with a faster time to solution than the KNL for all molecules and methods tested. While the Haswell exhibits an average speedup of at least 3.5 relative to the KNL for all nonthreaded computations, the KNL has a better parallel efficiency than the Haswell with increasing core counts. The architectures are further tested using a more computationally costly coupled cluster method on a transition state reaction. The Haswell appears to be the best choice to minimize the time to solution, though for very large systems and high levels of theory that require memory intensive processes the superior memory hierarchy and larger on node memory of the KNL can make it a better choice. These results are used to showcase aspects of novel architectures that will increase efficiency for quantum chemistry applications.

6.
J Chem Phys ; 152(15): 154102, 2020 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-32321259

RESUMEN

A discussion of many of the recently implemented features of GAMESS (General Atomic and Molecular Electronic Structure System) and LibCChem (the C++ CPU/GPU library associated with GAMESS) is presented. These features include fragmentation methods such as the fragment molecular orbital, effective fragment potential and effective fragment molecular orbital methods, hybrid MPI/OpenMP approaches to Hartree-Fock, and resolution of the identity second order perturbation theory. Many new coupled cluster theory methods have been implemented in GAMESS, as have multiple levels of density functional/tight binding theory. The role of accelerators, especially graphical processing units, is discussed in the context of the new features of LibCChem, as it is the associated problem of power consumption as the power of computers increases dramatically. The process by which a complex program suite such as GAMESS is maintained and developed is considered. Future developments are briefly summarized.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA