Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 23(42): 24102-24105, 2021 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-34694307

RESUMEN

For the parallel-consecutive bimolecular reaction mechanism, a solution to the inverse kinetic problem can be approached directly using a characteristic equation specified in terms of the Lambert-W function, similar to the logarithmic and reciprocal plot-treatments for simple first and second order reaction kinetics, respectively.


Asunto(s)
Algoritmos , Imidazoles/química , Cinética , Estructura Molecular
2.
Chem Commun (Camb) ; 54(89): 12582-12585, 2018 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-30349920

RESUMEN

Complexation of Pu(iv) with the actinide extractant CyMe4-BTPhen (2,9-bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-1,2,4-benzotriazin-3-yl)-1,10-phenanthroline) was followed by vis-NIR spectroscopy in acetonitrile solution. The solid-state structure of the crystallized product suggests that Pu(iv) is reduced to Pu(iii) upon complexation. Analysis by DFT modeling is consistent with metal-based rather than ligand-based reduction.

3.
Org Biomol Chem ; 15(40): 8523-8528, 2017 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-28956581

RESUMEN

This paper describes a total synthesis of the terpene-derived natural product aritasone via the hetero-Diels-Alder [4 + 2] cyclodimerisation of pinocarvove, which represents the proposed biosyntheic route. The hetero-Diels-Alder dimerisation of pinocarvone did not proceed under standard conditions, and ultra-high pressure (19.9 kbar) was required. As it seems unlikely that these ultra-high pressures are accessible within a plant cell, we suggest that the original biosynthetic hypothesis be reconsidered, and alternatives are discussed.


Asunto(s)
Monoterpenos/química , Monoterpenos Bicíclicos , Reacción de Cicloadición , Dimerización , Conformación Molecular , Presión , Estereoisomerismo
4.
Chem Commun (Camb) ; 53(58): 8160-8163, 2017 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-28677706

RESUMEN

A broad range of 1,10-phenanthroline substrates was efficiently C-H functionalised, providing rapid, gram-scale access to substituted heteroaromatic cores of broad utility. Furthermore, this C-H functionalisation pathway was extended to the synthesis of previously inaccessible, ultra-soluble, 2,9-bis-triazinyl-1,10-phenanthroline (BTPhen) ligands for advanced nuclear fuel cycles.

5.
Chem Commun (Camb) ; 53(36): 5001-5004, 2017 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-28426063

RESUMEN

The first hydrophilic, 1,10-phenanthroline derived ligands consisting of only C, H, O and N atoms for the selective extraction of Am(iii) from spent nuclear fuel are reported herein. One of these 2,9-bis-triazolyl-1,10-phenanthroline (BTrzPhen) ligands combined with a non-selective extracting agent, was found to exhibit process-suitable selectivity for Am(iii) over Eu(iii) and Cm(iii), providing a clear step forward.

6.
Chem Commun (Camb) ; 53(28): 4010-4013, 2017 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-28338148

RESUMEN

Novel BTBP [bis-(1,2,4-triazin-3-yl)-2,2'-bipyridine]/BTPhen [bis-(1,2,4-triazin-3-yl)-1,10-phenanthroline] functionalized silica gels have been developed to extract minor actinides, lanthanides and other fission products. BTPhen functionalized silica gel is capable of near-quantitative removal of Am(iii) in the presence of Eu(iii) from aqueous HNO3, while BTBP functionalized silica gel is able to remove problematic corrosion and fission products that are found in PUREX raffinates.

7.
Dalton Trans ; 45(45): 18102-18112, 2016 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-27488559

RESUMEN

The first examples of 4,7-disubstituted 2,9-bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-1,2,4-benzo-triazin-3-yl)-1,10-phenanthroline (CyMe4-BTPhen) ligands are reported herein. Evaluating the kinetics, selectivity and stoichiometry of actinide(iii) and lanthanide(iii) radiotracer extractions has provided a mechanistic insight into the extraction process. For the first time, it has been demonstrated that metal ion extraction kinetics can be modulated by backbone functionalisation and a promising new CHON compliant candidate ligand with enhanced metal ion extraction kinetics has been identified. The effects of 4,7-functionalisation on the equilibrium metal ion distribution ratios are far more pronounced than those of 5,6-functionalisation. The complexation of Cm(iii) with two of the functionalised ligands was investigated by TRLFS and, at equilibrium, species of 1 : 2 [M : L] stoichiometry were observed exclusively. A direct correlation between the ELUMO-EHOMO energy gap and metal ion extraction potential is reported, with DFT studies reaffirming experimental findings.

8.
J Org Chem ; 81(21): 10517-10520, 2016 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-27463244

RESUMEN

Effects of chloro and bromo substitution at the 4-position of the pyridine ring of 6,6'-bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydrobenzo[e][1,2,4]triazin-3-yl)-2,2'-bipyridine (CyMe4-BTBP) have been studied with regard to the extraction of Am(III) from Eu(III) and Cm(III) from 0.1-3 M HNO3. Similarly to CyMe4-BTBP, a highly efficient (DAm > 10 at 3 M HNO3) and selective (SFAm/Eu > 100 at 3 M HNO3) extraction was observed for Cl-CyMe4-BTBP and Br-CyMe4-BTBP in 1-octanol but in the absence of a phase-transfer agent.

9.
Nat Prod Res ; 30(3): 305-10, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26222678

RESUMEN

Fractionation of the methanol extract of the leaves of Oricia renieri and Oricia suaveolens (Rutaceae) led to the isolation of 13 compounds including the hitherto unknown furoquinoline alkaloid named 6,7-methylenedioxy-5-hydroxy-8-methoxy-dictamnine (1) and a flavanone glycoside named 5-hydroxy-4'-methoxy-7-O-[α-L-rhamnopyranosyl(1‴→5″)-ß-D-apiofuranosyl]-flavanoside (2), together with 11 known compounds (3-13). The structures of the compounds were determined by comprehensive analyses of their 1D and 2D NMR, mass spectral data and comparison. All compounds isolated were examined for their activity against human carcinoma cell lines. The alkaloids 1, 5, 12, 13 and the phenolic 2, 8, 11 tested compounds exhibited non-selective moderate cytotoxic activity with IC50 8.7-15.9 µM whereas compounds 3, 4, 6, 7, 9 and 10 showed low activity.


Asunto(s)
Flavonas/farmacología , Quinolinas/aislamiento & purificación , Quinolinas/farmacología , Rutaceae/química , Antineoplásicos Fitogénicos/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Espectroscopía de Resonancia Magnética , Extractos Vegetales/química , Extractos Vegetales/farmacología , Hojas de la Planta/química
10.
Chem Commun (Camb) ; 51(44): 9189-92, 2015 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-25952320

RESUMEN

Water soluble anionic and cationic bis-triazine ligands are able to suppress (mask) the extraction of corrosion and fission products such as Ni(II) and Pd(II) that are found in PUREX raffinates. Thus it is possible to separate these elements from the minor actinide Am(III). Although some masking agents have previously been developed that retard the extraction of Pd(II), this is the first time a masking agent has been developed for Ni(II).

11.
Bioorg Med Chem ; 23(13): 3379-87, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-25971873

RESUMEN

Solvent-free desymmetrisation of meso-dialdehyde 1 with chiral 1-phenylethan-1-ol, led to preparation of 4-silyloxy-6-alkyloxytetrahydro-2H-pyran-2-one (+)-3a with a 96:4 dr Deprotected lactone (+)-19a and the related racemic lactones 16a-18a present a lactone moiety resembling the natural substrate of HMG-CoA reductase and their antifungal properties have been evaluated against the phytopathogenic fungi Botrytis cinerea and Colletotrichum gloeosporioides. These compounds were selectively active against B. cinerea, while inactive against C. gloeosporioides.


Asunto(s)
Botrytis/efectos de los fármacos , Colletotrichum/efectos de los fármacos , Fungicidas Industriales/síntesis química , Glutaral/análogos & derivados , Piranos/síntesis química , Aldehídos/química , Botrytis/crecimiento & desarrollo , Botrytis/aislamiento & purificación , Colletotrichum/crecimiento & desarrollo , Colletotrichum/aislamiento & purificación , Recuento de Colonia Microbiana , Fungicidas Industriales/farmacología , Glutaral/química , Hidroximetilglutaril-CoA-Reductasas NADP-Dependientes/química , Lactonas/química , Imitación Molecular , Alcohol Feniletílico/química , Enfermedades de las Plantas/microbiología , Piranos/farmacología , Estereoisomerismo , Relación Estructura-Actividad , Vitis/microbiología
12.
Chem Commun (Camb) ; 51(27): 5860-3, 2015 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-25727341

RESUMEN

It has been shown that modification of the phenanthroline backbone of CyMe4-BTPhen leads to subtle electronic modulation, permitting differential ligation of Am(III) and Cm(III) resulting in separation factors up to 7.

13.
Chem Sci ; 6(8): 4812-4821, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-29142716

RESUMEN

We report the first examples of hydrophilic 6,6'-bis(1,2,4-triazin-3-yl)-2,2'-bipyridine (BTBP) and 2,9-bis(1,2,4-triazin-3-yl)-1,10-phenanthroline (BTPhen) ligands, and their applications as actinide(iii) selective aqueous complexing agents. The combination of a hydrophobic diamide ligand in the organic phase and a hydrophilic tetrasulfonated bis-triazine ligand in the aqueous phase is able to separate Am(iii) from Eu(iii) by selective Am(iii) complex formation across a range of nitric acid concentrations with very high selectivities, and without the use of buffers. In contrast, disulfonated bis-triazine ligands are unable to separate Am(iii) from Eu(iii) in this system. The greater ability of the tetrasulfonated ligands to retain Am(iii) selectively in the aqueous phase than the corresponding disulfonated ligands appears to be due to the higher aqueous solubilities of the complexes of the tetrasulfonated ligands with Am(iii). The selectivities for Am(iii) complexation observed with hydrophilic tetrasulfonated bis-triazine ligands are in many cases far higher than those found with the polyaminocarboxylate ligands previously used as actinide-selective complexing agents, and are comparable to those found with the parent hydrophobic bis-triazine ligands. Thus we demonstrate a feasible alternative method to separate actinides from lanthanides than the widely studied approach of selective actinide extraction with hydrophobic bis-1,2,4-triazine ligands such as CyMe4-BTBP and CyMe4-BTPhen.

14.
Chem Commun (Camb) ; 50(95): 15082-5, 2014 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-25331990

RESUMEN

It has been shown that CyMe4-BTPhen-functionalized silica-coated maghemite (γ-Fe2O3) magnetic nanoparticles (MNPs) are capable of quantitative separation of Am(III) from Eu(III) from HNO3 solutions. These MNPs also show a small but significant selectivity for Am(III) over Cm(III) with a separation factor of around 2 in 4 M HNO3. The water molecule in the cavity of the BTPhen may also play an important part in the selectivity.

15.
Chem Commun (Camb) ; 50(56): 7477-80, 2014 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-24881562

RESUMEN

Neocuproine has been covalently bound to silica-coated maghemite (γ-Fe2O3) magnetic nanoparticles (MNPs) by a phenyl ether linkage. The resulting MNPs are able to remove Cu(II) from 12 ppm aqueous solution with an extraction efficiency of up to 99% at pH 2.

16.
Chem Commun (Camb) ; 49(76): 8534-6, 2013 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-23945728

RESUMEN

Effects of bromine substitution at the 5 and 5,6-positions of the 1,10-phenanthroline nucleus of BTPhen ligand on their extraction properties for Ln(III) and An(III) cations have been studied. Compared to C5-BTPhen, electronic modulation in BrC5-BTPhen and Br2C5-BTPhen enabled these ligands to be fine-tuned in order to enhance the separation selectivity of Am(III) from Eu(III).

17.
Inorg Chem ; 52(9): 4993-5005, 2013 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-23614770

RESUMEN

Two members of the tetradentate N-donor ligand families 6,6'-bis(1,2,4-triazin-3-yl)-2,2'-bipyridine (BTBP) and 2,9-bis(1,2,4-triazin-3-yl)-1,10-phenanthroline (BTPhen) currently being developed for separating actinides from lanthanides have been studied. It has been confirmed that CyMe4-BTPhen 2 has faster complexation kinetics than CyMe4-BTBP 1. The values for the HOMO-LUMO gap of 2 are comparable with those of CyMe4-BTBP 1 for which the HOMO-LUMO gap was previously calculated to be 2.13 eV. The displacement of BTBP from its bis-lanthanum(III) complex by BTPhen was observed by NMR, and constitutes the only direct evidence for the greater thermodynamic stability of the complexes of BTPhen. NMR competition experiments suggest the following order of bis-complex stability: 1:2 bis-BTPhen complex ≥ heteroleptic BTBP/BTPhen 1:2 bis-complex > 1:2 bis-BTBP complex. Kinetics studies on some bis-triazine N-donor ligands using the stopped-flow technique showed a clear relationship between the rates of metal ion complexation and the degree to which the ligand is preorganized for metal binding. The BTBPs must overcome a significant (ca. 12 kcal mol(-1)) energy barrier to rotation about the central biaryl C-C axis in order to achieve the cis-cis conformation that is required to form a complex, whereas the cis-cis conformation is fixed in the BTPhens. Complexation thermodynamics and kinetics studies in acetonitrile show subtle differences between the thermodynamic stabilities of the complexes formed, with similar stability constants being found for both ligands. The first crystal structure of a 1:1 complex of CyMe4-BTPhen 2 with Y(NO3)3 is also reported. The metal ion is 10-coordinate being bonded to the tetradentate ligand 2 and three bidentate nitrate ions. The tetradentate ligand is nearly planar with angles between consecutive rings of 16.4(2)°, 6.4(2)°, 9.7(2)°, respectively.

18.
Inorg Chem ; 52(7): 3429-44, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23438021

RESUMEN

Lanthanide(III) complexes with N-donor extractants, which exhibit the potential for the separation of minor actinides from lanthanides in the management of spent nuclear fuel, have been directly synthesized and characterized in both solution and solid states. Crystal structures of the Pr(3+), Eu(3+), Tb(3+), and Yb(3+) complexes of 2,9-bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-1,2,4-benzotriazin-3-yl)-1,10-phenanthroline (CyMe4-BTPhen) and the Pr(3+), Eu(3+), and Tb(3+) complexes of 6,6'-bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-1,2,4-benzotriazin-3-yl)-2,2'-bypyridine (CyMe4-BTBP) were obtained. The majority of these structures displayed coordination of two of the tetra-N-donor ligands to each Ln(3+) ion, even when in some cases the complexations were performed with equimolar amounts of lanthanide and N-donor ligand. The structures showed that generally the lighter lanthanides had their coordination spheres completed by a bidentate nitrate ion, giving a 2+ charged complex cation, whereas the structures of the heavier lanthanides displayed tricationic complex species with a single water molecule completing their coordination environments. Electronic absorption spectroscopic titrations showed formation of the 1:2 Ln(3+)/L(N4-donor) species (Ln = Pr(3+), Eu(3+), Tb(3+)) in methanol when the N-donor ligand was in excess. When the Ln(3+) ion was in excess, evidence for formation of a 1:1 Ln(3+)/L(N4-donor) complex species was observed. Luminescent lifetime studies of mixtures of Eu(3+) with excess CyMe4-BTBP and CyMe4-BTPhen in methanol indicated that the nitrate-coordinated species is dominant in solution. X-ray absorption spectra of Eu(3+) and Tb(3+) species, formed by extraction from an acidic aqueous phase into an organic solution consisting of excess N-donor extractant in pure cyclohexanone or 30% tri-n-butyl phosphate (TBP) in cyclohexanone, were obtained. The presence of TBP in the organic phase did not alter lanthanide speciation. Extended X-ray absorption fine structure data from these spectra were fitted using chemical models established by crystallography and solution spectroscopy and showed the dominant lanthanide species in the bulk organic phase was a 1:2 Ln(3+)/L(N-donor) species.

19.
Inorg Chem ; 52(7): 3414-28, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-22867058

RESUMEN

The removal of the most long-lived radiotoxic elements from used nuclear fuel, minor actinides, is foreseen as an essential step toward increasing the public acceptance of nuclear energy as a key component of a low-carbon energy future. Once removed from the remaining used fuel, these elements can be used as fuel in their own right in fast reactors or converted into shorter-lived or stable elements by transmutation prior to geological disposal. The SANEX process is proposed to carry out this selective separation by solvent extraction. Recent efforts to develop reagents capable of separating the radioactive minor actinides from lanthanides as part of a future strategy for the management and reprocessing of used nuclear fuel are reviewed. The current strategies for the reprocessing of PUREX raffinate are summarized, and some guiding principles for the design of actinide-selective reagents are defined. The development and testing of different classes of solvent extraction reagent are then summarized, covering some of the earliest ligand designs right through to the current reagents of choice, bis(1,2,4-triazine) ligands. Finally, we summarize research aimed at developing a fundamental understanding of the underlying reasons for the excellent extraction capabilities and high actinide/lanthanide selectivities shown by this class of ligands and our recent efforts to immobilize these reagents onto solid phases.

20.
Dalton Trans ; 41(30): 9209-19, 2012 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-22729349

RESUMEN

The quadridentate N-heterocyclic ligand 6-(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-1,2,4-benzotriazin-3-yl)-2,2' : 6',2''-terpyridine (CyMe(4)-hemi-BTBP) has been synthesized and its interactions with Am(III), U(VI), Ln(III) and some transition metal cations have been evaluated by X-ray crystallographic analysis, Am(III)/Eu(III) solvent extraction experiments, UV absorption spectrophotometry, NMR studies and ESI-MS. Structures of 1:1 complexes with Eu(III), Ce(III) and the linear uranyl (UO(2)(2+)) ion were obtained by X-ray crystallographic analysis, and they showed similar coordination behavior to related BTBP complexes. In methanol, the stability constants of the Ln(III) complexes are slightly lower than those of the analogous quadridentate bis-triazine BTBP ligands, while the stability constant for the Yb(III) complex is higher. (1)H NMR titrations and ESI-MS with lanthanide nitrates showed that the ligand forms only 1:1 complexes with Eu(III), Ce(III) and Yb(III), while both 1:1 and 1:2 complexes were formed with La(III) and Y(III) in acetonitrile. A mixture of isomeric chiral 2:2 helical complexes was formed with Cu(I), with a slight preference (1.4:1) for a single directional isomer. In contrast, a 1:1 complex was observed with the larger Ag(I) ion. The ligand was unable to extract Am(III) or Eu(III) from nitric acid solutions into 1-octanol, except in the presence of a synergist at low acidity. The results show that the presence of two outer 1,2,4-triazine rings is required for the efficient extraction and separation of An(III) from Ln(III) by quadridentate N-donor ligands.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...