Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Virol Methods ; 321: 114801, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37625621

RESUMEN

To facilitate the development of effective viral detection techniques, a positive control material is required for validating their quantitative performance. Inactivated viruses serve as viable control materials, as they can be handled without the constraints of biohazard safety facilities. However, inactivation alters the structure of viral component molecules, necessitating the selection of inactivation methods that have minimal effects on the target molecules relevant to molecular detection techniques. Only a limited number of studies have investigated inactivation methods to produce viral control materials. Therefore, the aim of this study was to investigate various virus inactivation methods and evaluate their impact on molecular detection techniques, with a specific focus on viral proteins and RNA. We evaluated the effects of ultraviolet (UV) irradiation, heat, beta-propiolactone (BPL), hydrogen peroxide (H2O2), and perchloric acid (HClO4) inactivation methods to identify the most effective technique and its optimal conditions. Enzyme-linked immunosorbent assay (ELISA) and reverse transcription-digital polymerase chain reaction (RT-dPCR) were employed as model assays to assess the effects of these treatments on protein and RNA measurements. Among the evaluated methods, UV and heat treatments demonstrated minimal interference with ELISA, while heat treatment had the least impact on RT-dPCR measurements. Consequently, our findings revealed that heat inactivation holds the potential for producing inactivated viruses that can be effectively used in molecular detection techniques targeting both viral protein and RNA.


Asunto(s)
Peróxido de Hidrógeno , Proteínas Virales , Inactivación de Virus , Bioensayo , ARN
2.
Anal Bioanal Chem ; 415(10): 1897-1904, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36820912

RESUMEN

A single-molecule assay (SiMoA) using a digital enzyme-linked immunosorbent assay (ELISA) has been attracting attention as a promising method that can detect viruses with ultra-high sensitivity. However, the quantitative application of digital ELISA has not been adequately reported. Therefore, in this study, we first evaluated the linearity and sensitivity of digital ELISA using a Certified Reference Material of C-reactive protein (NMIJ CRM 6201-c) as a quality control material. Next, we originally screened those antibody pair that are suitable for detecting recombinant viral proteins of influenza A virus, nucleoprotein (NP), and hemagglutinin (HA), and established the measurement system. Under optimized conditions, the limit of detection (LOD) of NP and HA was 0.59 fM and 0.99 fM, and the coefficient of determination, R2, was 0.9998 and 0.9979, respectively. Two subtypes of influenza virus, A/Puerto Rico/8/1934 (H1N1) [PR8] and A/Panama/2007/99 (H3N2) [Pan99], were also quantified under established conditions, and the LOD of PR8 was 3.1 × 102 PFU/mL on targeting NP and 7.4 × 102 PFU/mL on targeting HA. The LOD of Pan99 was 5.3 × 102 PFU/mL on targeting NP. The specificity and robustness of the recombinant viral protein and influenza virus measurements using digital ELISA were also evaluated. Our measurement system showed enough specificity to discriminate the viral subtypes properly and showed sufficient inter- and intra-assay variations for both measurements of recombinant viral proteins and viruses, except for NP-targeting virus measurement.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Proteínas Virales , Subtipo H3N2 del Virus de la Influenza A , Ensayo de Inmunoadsorción Enzimática/métodos , Anticuerpos Antivirales/análisis
3.
PeerJ ; 9: e11851, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34395086

RESUMEN

The hybrid method upon combining rolling circle amplification and loop-mediated isothermal amplification (RCA-LAMP) was developed to quantify very small amount of different type of RNAs, such as miRNAs. RCA-LAMP can help detect short sequences through padlock probe (PLP) circularization and exhibit powerful DNA amplification. However, one of the factors that determines the detection limit of RCA-LAMP is non-specific amplification. In this study, we improved the accuracy of RCA-LAMP through applying RNase H-dependent PCR (rhPCR) technology. In this method, the non-specific amplification was suppressed by using the rh primer, which is designed through blocking the modification at the 3'end to stop DNA polymerase reaction and replacing the 6th DNA molecule from the end with RNA using RNase H2 enzyme. Traditional RCA-LAMP amplified the non-specific amplicons from linear PLP without a targeting reaction, while RCA-LAMP with rh primer and RNase H2 suppressed the non-specific amplification. Conversely, we identified the risk posed upon conducting PLP cyclization reaction using Splint R ligase in the RNA-targeting step that occurred even in the RNA-negative condition, which is another factor determining the detection limit of RCA-LAMP. Therefore, this study contributes in improving the accuracy of RNA quantification using RCA-LAMP.

4.
Int J Mol Sci ; 21(7)2020 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-32225109

RESUMEN

Recent reports have suggested that 5-aminolevulinic acid (5-ALA), which is a precursor to protoporphyrin IX (PpIX), leads to selective accumulation of PpIX in tumor cells and acts as a radiation sensitizer in vitro and in vivo in mouse models of melanoma, glioma, and colon cancer. In this study, we investigated the effect of PpIX under X-ray irradiation through ROS generation and DNA damage. ROS generation by the interaction between PpIX and X-ray was evaluated by two kinds of probes, 3'-(p-aminophenyl) fluorescein (APF) for hydroxyl radical (•OH) detection and dihydroethidium (DHE) for superoxide (O2•-). •OH showed an increase, regardless of the dissolved oxygen. Meanwhile, the increase in O2•- was proportional to the dissolved oxygen. Strand breaks (SBs) of DNA molecule were evaluated by gel electrophoresis, and the enhancement of SBs was observed by PpIX treatment. We also studied the effect of PpIX for DNA damage in cells by X-ray irradiation using a B16 melanoma culture. X-ray irradiation induced γH2AX, DNA double-strand breaks (DSBs) in the context of chromatin, and affected cell survival. Since PpIX can enhance ROS generation even in a hypoxic state and induce DNA damage, combined radiotherapy treatment with 5-ALA is expected to improve therapeutic efficacy for radioresistant tumors.


Asunto(s)
Roturas del ADN de Doble Cadena , Melanoma/metabolismo , Protoporfirinas/metabolismo , Fármacos Sensibilizantes a Radiaciones/metabolismo , Ácido Aminolevulínico/metabolismo , Animales , Línea Celular Tumoral , Melanoma/genética , Melanoma/radioterapia , Ratones , Protoporfirinas/efectos de la radiación , Fármacos Sensibilizantes a Radiaciones/efectos de la radiación , Especies Reactivas de Oxígeno/metabolismo , Terapia por Rayos X/métodos , Rayos X
5.
Sci Rep ; 9(1): 18163, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31796788

RESUMEN

X-ray responsivity resulting in the generation of reactive oxygen species (ROS) was investigated in 9600 organic compounds that were selected by considering their structural diversity. We focused on superoxides that were primarily detected using dihydroethidium (DHE) and hydroxyl radicals, that were identified fluorometrically using 3'-(p-aminophenyl) Fluorescein (APF). Many organic compounds were discovered that responded to the DHE and/or APF assay using X-ray irradiation. These results suggest that some of these organic compounds emit either superoxides or hydroxyl radicals whereas others emit both under the influence of X-ray irradiation. The response of the derivatives of a hit compound with a partial change in the structure was also investigated. The products produced from DHE by X-ray irradiation were identified by HPLC to confirm the integrity of the process. Although, the reactions were suppressed by the superoxide dismutase (SOD), not only 2-hydroxyethidium (2-OH-E+), but also ethidium (E+) were detected. The results suggest that apart from a direct reaction, an indirect reaction may occur between DHE and the superoxides. Although X-ray responsiveness could not be inferred due to the molecular complexity of the investigated compounds, delineation of these reactions will facilitate the development of the next generation of radiosensitizers.

6.
J Hazard Mater ; 378: 120777, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31228707

RESUMEN

Concern over the effects of nanomaterials on human health has risen due to the dramatic advances in the development of various technologies based on nanomaterials. Gifu Prefecture and Gifu University are developing technologies for recycling used carbon fiber because the waste disposal process is highly cost and energy intensive. However, generation of carbon fiber dust during the recycling process is a serious issue, especially in the occupational environment. Recycling requires carbonization by partial firing treatment at 500℃ followed by firing treatment at 440℃: these processes produce dust as a by-product. It is important to study the influence of carbon fibers on human health at a molecular level. In this study, three types of carbon fibers - before recycling, after carbonization, and after firing were evaluated for their toxic effects on mice. During the breeding period, no loss in body weight was confirmed. Further, by staining the lung tissue sections, it was found that pulmonary fibrosis did not occur. We found that these carbon fibers might not possess severe toxicity. However, we also found that the toxicity varies according to firing treatment. Furthermore, we found that firing treatment reduces the potential hazard to human health.


Asunto(s)
Fibra de Carbono/química , Carbono/química , Polvo/análisis , Monitoreo del Ambiente/métodos , Reciclaje/métodos , Animales , Peso Corporal/efectos de los fármacos , ADN/efectos de los fármacos , Contaminación Ambiental , Perfilación de la Expresión Génica , Hemoglobinas/química , Inflamación , Pulmón/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Exposición Profesional/efectos adversos , Análisis de Secuencia por Matrices de Oligonucleótidos , Estrés Oxidativo , Tamaño de la Partícula , ARN/análisis , Eliminación de Residuos
7.
Pol J Microbiol ; 67(3): 347-353, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30451452

RESUMEN

In this paper, we propose a new evaluation method using external standard RNA for quality control of the extracted RNA. RNA Integrity Number and UV absorption are generally used as a basis for RNA quality control; however, these methods do not always reflect the quality of mRNA. While standard RNA is supposedly designed on the basis of mRNA, it has the potential to be used to evaluate the quality of the mRNA. In this study, we took into consideration the three essential factors, viz., yield of mRNA, inhibition to DNA polymerase, and degradation of mRNA for determining the RNA quality using standard RNA. It would be possible to know yield of mRNA and inhibition of the enzyme reaction by adding standard RNA before RNA extraction and looking at standard RNA loss. Degradation was evaluated by comparing the differences in the 3' and 5' regions of the RNA. In our study, it was demonstrated that in the crude extract of Saccharomyces cerevisiae , degradation was comparatively higher at the 3' end of RNA than at the 5' end. Hence, the degree of RNA degradation can be evaluated by comparing the ratio of degradation from the 3' and 5' end.


Asunto(s)
Control de Calidad , ARN/análisis , ARN/aislamiento & purificación , Estabilidad del ARN , ARN Mensajero/análisis , ARN Mensajero/aislamiento & purificación , Reacción en Cadena en Tiempo Real de la Polimerasa , Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA