Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Exp Neurol ; 253: 82-90, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24333565

RESUMEN

Epilepsy is a neurological disorder with the occurrence of seizures, which are often accompanied by sleep. Prostaglandin (PG) D2 is produced by hematopoietic or lipocalin-type PGD synthase (H- or L-PGDS) and involved in the regulation of physiological sleep. Here, we show that H-PGDS, L/H-PGDS or DP1 receptor (DP1R) KO mice exhibited more intense pentylenetetrazole (PTZ)-induced seizures in terms of latency of seizure onset, duration of generalized tonic-clonic seizures, and number of seizure spikes. Seizures significantly increased the PGD2 content of the brain in wild-type mice. This PTZ-induced increase in PGD2 was attenuated in the brains of L- or H-PGDS KO and abolished in L/H-PGDS KO mice. Postictal non-rapid eye movement sleep was observed in the wild-type and H-PGDS or DP2R KO, but not in the L-, L/H-PGDS or DP1R KO, mice. These findings demonstrate that PGD2 produced by H-PGDS and acting on DP1R is essential for seizure suppression and that the L-PGDS/PGD2/DP1R system regulates sleep that follows seizures.


Asunto(s)
Oxidorreductasas Intramoleculares/fisiología , Lipocalinas/fisiología , Convulsiones/metabolismo , Convulsiones/fisiopatología , Sueño REM/fisiología , 6-Cetoprostaglandina F1 alfa/metabolismo , Análisis de Varianza , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Convulsivantes/toxicidad , Dinoprostona/metabolismo , Modelos Animales de Enfermedad , Electroencefalografía , Electromiografía , Oxidorreductasas Intramoleculares/deficiencia , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Pentilenotetrazol/toxicidad , Receptores de Tromboxano A2 y Prostaglandina H2/metabolismo , Convulsiones/inducido químicamente , Convulsiones/genética , Sueño REM/efectos de los fármacos , Sueño REM/genética , Factores de Tiempo , Factor de Transcripción DP1/deficiencia
2.
Fluids Barriers CNS ; 10: 19, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23659456

RESUMEN

BACKGROUND: Histamine is an ubiquitous inflammatory mediator of numerous physiological processes. Histamine and its receptors have been implicated in multiple sclerosis (MS) disease pathogenesis. We prospectively enrolled 36 MS patients and 19 age and gender-matched healthy volunteers for cerebrospinal fluid (CSF) histamine analysis. FINDINGS: CSF HISTAMINE LEVELS IN MS PATIENT SAMPLES WERE SIGNIFICANTLY HIGHER (MEDIAN: 35.6 pg/ml) than in controls (median: 5.5 pg/ml; Beta = 0.525, p < 0.001). In addition, histamine increased with age (Pearson's correlation, p < 0.003). CONCLUSIONS: Histamine may be an important factor for both the initiation and maintenance of chronic inflammatory diseases of the central nervous system. Our observation encourages a deeper investigation of the role of histamine in MS.

3.
Sleep Med Rev ; 15(6): 411-8, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22024172

RESUMEN

Prostaglandin (PG) D2 is the most potent endogenous sleep-promoting substance. PGD2 is produced by lipocalin-type PGD synthase localized in the leptomeninges, choroid plexus, and oligodendrocytes in the brain, and is secreted into the cerebrospinal fluid as a sleep hormone. PGD2 stimulates DP1 receptors localized in the leptomeninges under the basal forebrain and the hypothalamus. As a consequence, adenosine is released as a paracrine sleep-promoting molecule to activate adenosine A2A receptor-expressing sleep-promoting neurons and to inhibit adenosine A1 receptor-possessing arousal neurons. PGD2 activates a center of non-rapid eye movement (NREM) sleep regulation in the ventrolateral preoptic area, probably mediated by adenosine signaling, which activation inhibits the histaminergic arousal center in the tuberomammillary nucleus via descending GABAergic and galaninergic projections. The administration of a lipocalin-type PGD synthase inhibitor (SeCl4), DP1 antagonist (ONO-4127Na) or adenosine A2A receptor antagonist (caffeine) suppresses both NREM and rapid eye movement (REM) sleep, indicating that the PGD2-adenosine system is crucial for the maintenance of physiological sleep.


Asunto(s)
Prostaglandina D2/fisiología , Sueño/fisiología , Vigilia/fisiología , Adenosina/fisiología , Animales , Encéfalo/fisiología , Humanos , Ratones , Fases del Sueño/fisiología
4.
J Neurosci ; 31(27): 10067-75, 2011 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-21734299

RESUMEN

Caffeine, the most widely used psychoactive compound, is an adenosine receptor antagonist. It promotes wakefulness by blocking adenosine A(2A) receptors (A(2A)Rs) in the brain, but the specific neurons on which caffeine acts to produce arousal have not been identified. Using selective gene deletion strategies based on the Cre/loxP technology in mice and focal RNA interference to silence the expression of A(2A)Rs in rats by local infection with adeno-associated virus carrying short-hairpin RNA, we report that the A(2A)Rs in the shell region of the nucleus accumbens (NAc) are responsible for the effect of caffeine on wakefulness. Caffeine-induced arousal was not affected in rats when A(2A)Rs were focally removed from the NAc core or other A(2A)R-positive areas of the basal ganglia. Our observations suggest that caffeine promotes arousal by activating pathways that traditionally have been associated with motivational and motor responses in the brain.


Asunto(s)
Nivel de Alerta/efectos de los fármacos , Cafeína/farmacología , Estimulantes del Sistema Nervioso Central/farmacología , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Receptor de Adenosina A2A/metabolismo , Análisis de Varianza , Animales , Ganglios Basales/efectos de los fármacos , Ganglios Basales/metabolismo , Línea Celular Transformada , Colina O-Acetiltransferasa/metabolismo , Relación Dosis-Respuesta a Droga , Electroencefalografía/métodos , Electromiografía/métodos , Proteínas Fluorescentes Verdes/genética , Humanos , Locomoción/efectos de los fármacos , Locomoción/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Mutagénesis , Mutación/genética , Fosfopiruvato Hidratasa/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Sprague-Dawley , Receptor de Adenosina A2A/deficiencia , Receptor de Adenosina A2A/genética , Receptores de Dopamina D2/metabolismo , Transfección/métodos
5.
Curr Top Med Chem ; 11(8): 1047-57, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21401496

RESUMEN

This paper presents an overview of the current knowledge about the role of adenosine in the sleep-wake regulation with a focus on adenosine in the central nervous system, regulation of adenosine levels, adenosine receptors, and manipulations of the adenosine system by the use of pharmacological and molecular biological tools. The endogenous somnogen prostaglandin (PG) D(2) increases the extracellular level of adenosine under the subarachnoid space of the basal forebrain and promotes physiological sleep. Adenosine is neither stored nor released as a classical neurotransmitter and is thought to be formed inside cells or on their surface, mostly by breakdown of adenine nucleotides. The extracellular concentration of adenosine increases in the cortex and basal forebrain during prolonged wakefulness and decreases during the sleep recovery period. Therefore, adenosine is proposed to act as a homeostatic regulator of sleep and to be a link between the humoral and neural mechanisms of sleep-wake regulation. Both the adenosine A(1) receptor (A(1)R) and A(2A)R are involved in sleep induction. The A(2A)R plays a predominant role in the somnogenic effects of PGD(2). By use of gene-manipulated mice, the arousal effect of caffeine was shown to be dependent on the A(2A)R. On the other hand, inhibition of wake-promoting neurons via the A(1)R also mediates the sleep-inducing effects of adenosine, whereas activation of A(1)R in the lateral preoptic area induces wakefulness, suggesting that A(1)R regulates the sleep-wake cycle in a site-dependent manner. The potential therapeutic applications of agonists and antagonists of these receptors in sleep disorders are briefly discussed.


Asunto(s)
Adenosina , Prostaglandina D2/metabolismo , Receptor de Adenosina A1/metabolismo , Receptor de Adenosina A2A/metabolismo , Sueño/fisiología , Vigilia/fisiología , Adenosina/metabolismo , Adenosina/farmacología , Adenosina Trifosfato/metabolismo , Animales , Cafeína/farmacología , Espacio Extracelular/metabolismo , Expresión Génica , Humanos , Ratones , Ratones Noqueados , Neuronas/citología , Neuronas/metabolismo , Neurotransmisores/metabolismo , Neurotransmisores/farmacología , Proteínas de Transporte de Nucleósidos/metabolismo , Área Preóptica/citología , Área Preóptica/metabolismo , Prostaglandina D2/farmacología , Agonistas del Receptor Purinérgico P1/farmacología , Ratas , Receptor de Adenosina A1/genética , Receptor de Adenosina A2A/genética , Sueño/efectos de los fármacos , Trastornos del Sueño del Ritmo Circadiano/tratamiento farmacológico , Trastornos del Sueño del Ritmo Circadiano/fisiopatología , Espacio Subaracnoideo/citología , Espacio Subaracnoideo/metabolismo , Transmisión Sináptica , Vigilia/efectos de los fármacos
6.
J Biol Chem ; 284(33): 22344-22352, 2009 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-19546224

RESUMEN

Lipocalin type prostaglandin D synthase (L-PGDS) is a multifunctional protein acting as a somnogen (PGD2)-producing enzyme, an extracellular transporter of various lipophilic ligands, and an amyloid-beta chaperone in human cerebrospinal fluid. In this study, we determined the crystal structures of two different conformers of mouse L-PGDS, one with an open cavity of the beta-barrel and the other with a closed cavity due to the movement of the flexible E-F loop. The upper compartment of the central large cavity contains the catalytically essential Cys65 residue and its network of hydrogen bonds with the polar residues Ser45, Thr67, and Ser81, whereas the lower compartment is composed of hydrophobic amino acid residues that are highly conserved among other lipocalins. SH titration analysis combined with site-directed mutagenesis revealed that the Cys65 residue is activated by its interaction with Ser45 and Thr67 and that the S45A/T67A/S81A mutant showed less than 10% of the L-PGDS activity. The conformational change between the open and closed states of the cavity indicates that the mobile calyx contributes to the multiligand binding ability of L-PGDS.


Asunto(s)
Oxidorreductasas Intramoleculares/fisiología , Lipocalinas/química , Péptidos beta-Amiloides/metabolismo , Animales , Catálisis , Cristalografía por Rayos X/métodos , Cisteína/química , Escherichia coli/metabolismo , Oxidorreductasas Intramoleculares/metabolismo , Lipocalinas/metabolismo , Lipocalinas/fisiología , Ratones , Modelos Moleculares , Conformación Molecular , Mutagénesis Sitio-Dirigida , Mutación , Conformación Proteica , Estructura Secundaria de Proteína
7.
Proc Natl Acad Sci U S A ; 105(50): 19992-7, 2008 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-19066225

RESUMEN

Adenosine has been proposed to promote sleep through A(1) receptors (A(1)R's) and/or A(2A) receptors in the brain. We previously reported that A(2A) receptors mediate the sleep-promoting effect of prostaglandin D(2), an endogenous sleep-inducing substance, and that activation of these receptors induces sleep and blockade of them by caffeine results in wakefulness. On the other hand, A(1)R has been suggested to increase sleep by inhibition of the cholinergic region of the basal forebrain. However, the role and target sites of A(1)R in sleep-wake regulation remained controversial. In this study, immunohistochemistry revealed that A(1)R was expressed in histaminergic neurons of the rat tuberomammillary nucleus (TMN). In vivo microdialysis showed that the histamine release in the frontal cortex was decreased by microinjection into the TMN of N(6)-cyclopentyladenosine (CPA), an A(1)R agonist, adenosine or coformycin, an inhibitor of adenosine deaminase, which catabolizes adenosine to inosine. Bilateral injection of CPA into the rat TMN significantly increased the amount and the delta power density of non-rapid eye movement (non-REM; NREM) sleep but did not affect REM sleep. CPA-promoted sleep was observed in WT mice but not in KO mice for A(1)R or histamine H(1) receptor, indicating that the NREM sleep promoted by A(1)R-specific agonist depended on the histaminergic system. Furthermore, the bilateral injection of adenosine or coformycin into the rat TMN increased NREM sleep, which was completely abolished by coadministration of 1,3-dimethyl-8-cyclopenthylxanthine, a selective A(1)R antagonist. These results indicate that endogenous adenosine in the TMN suppresses the histaminergic system via A(1)R to promote NREM sleep.


Asunto(s)
Adenosina/administración & dosificación , Área Hipotalámica Lateral/efectos de los fármacos , Receptor de Adenosina A1/fisiología , Receptores Histamínicos H1/fisiología , Fases del Sueño/efectos de los fármacos , Agonistas del Receptor de Adenosina A1 , Inhibidores de la Adenosina Desaminasa , Animales , Coformicina/farmacología , Inhibidores Enzimáticos/farmacología , Histamina/metabolismo , Área Hipotalámica Lateral/fisiología , Masculino , Ratones , Ratones Noqueados , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Ratas , Ratas Sprague-Dawley , Receptor de Adenosina A1/genética , Fases del Sueño/fisiología
8.
J Biol Chem ; 283(28): 19165-75, 2008 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-18390546
9.
Curr Opin Pharmacol ; 7(1): 33-8, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17129762

RESUMEN

Prostaglandin (PG) D2 and adenosine are potent humoral sleep-inducing factors that accumulate in the brain during prolonged wakefulness. PGD2 is produced in the brain by lipocalin-type PGD synthase, which is localized mainly in the leptomeninges, choroid plexus and oligodendrocytes, and circulates in the cerebrospinal fluid as a sleep hormone. It stimulates DP1 receptors on leptomeningeal cells of the basal forebrain to release adenosine as a paracrine signaling molecule to promote sleep. Adenosine activates adenosine A2A receptor-expressing sleep-active neurons in the basal forebrain and the ventrolateral preoptic area. Sleep-promoting neurons in the ventrolateral preoptic area send inhibitory signals to suppress the histaminergic neurons in the tuberomammillary nucleus, which contribute to arousal through histamine H1 receptors. Increased knowledge of the molecular mechanisms by which PGD2 induces sleep through activation of adenosine A2A receptors and inhibition of the histaminergic arousal system will be useful both for a better understanding of sleep/wake regulation and for the development of novel types of sleeping pills or anti-doze drugs.


Asunto(s)
Adenosina/fisiología , Prostaglandina D2/fisiología , Sueño/fisiología , Vigilia/fisiología , Animales , Encéfalo/fisiología , Histamina/fisiología , Humanos , Neuronas/fisiología
10.
Proc Natl Acad Sci U S A ; 103(47): 17949-54, 2006 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-17093043

RESUMEN

Prostaglandin (PG) D2 has been proposed to be essential for the initiation and maintenance of the physiological sleep of rats because intracerebroventricular administration of selenium tetrachloride (SeCl4), a selective inhibitor of PGD synthase (PGDS), was shown to reduce promptly and effectively the amounts of sleep during the period of infusion. However, gene knockout (KO) mice of PGDS and prostaglandin D receptor (DP1R) showed essentially the same circadian profiles and daily amounts of sleep as wild-type (WT) mice, raising questions about the involvement of PGD2 in regulating physiological sleep. Here we examined the effect of SeCl4 on the sleep of WT and KO mice for PGDS and DP1R and that of a DP1R antagonist, ONO-4127Na, on the sleep of rats. The i.p. injection of SeCl4 into WT mice decreased the PGD2 content in the brain without affecting the amounts of PGE2 and PGF(2alpha). It inhibited sleep dose-dependently and immediately after the administration during the light period when mice normally sleep, increasing the wake time; and the treatment with this compound resulted in a distinct sleep rebound during the following dark period. The SeCl4-induced insomnia was observed in hematopoietic PGDS KO mice but not at all in lipocalin-type PGDS KO, hematopoietic and lipocalin-type PGDS double KO or DP1R KO mice. Furthermore, the DP1R antagonist ONO-4127Na reduced sleep of rats by 30% during infusion into the subarachnoid space under the rostral basal forebrain at 200 pmol/min. These results clearly show that the lipocalin-type PGDS/PGD2/DP1R system plays pivotal roles in the regulation of physiological sleep.


Asunto(s)
Cloruros/farmacología , Oxidorreductasas Intramoleculares/metabolismo , Isoenzimas/metabolismo , Prostaglandina D2/metabolismo , Receptores Inmunológicos/metabolismo , Receptores de Prostaglandina/metabolismo , Compuestos de Selenio/farmacología , Sueño/efectos de los fármacos , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Relación Dosis-Respuesta a Droga , Humanos , Oxidorreductasas Intramoleculares/antagonistas & inhibidores , Oxidorreductasas Intramoleculares/genética , Isoenzimas/antagonistas & inhibidores , Isoenzimas/genética , Lipocalinas , Ratones , Ratones Noqueados , Ratas , Receptores Inmunológicos/antagonistas & inhibidores , Receptores Inmunológicos/genética , Receptores de Prostaglandina/antagonistas & inhibidores , Receptores de Prostaglandina/genética
12.
Proc Natl Acad Sci U S A ; 103(12): 4687-92, 2006 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-16537376

RESUMEN

Histaminergic neurons play an important role in the regulation of sleep-wake behavior through histamine H(1) receptors (H(1)R). Blockade of the histamine H(3) receptor (H(3)R) is proposed to induce wakefulness by regulating the release of various wake-related transmitters, not only histamine. In the present study, we characterized sleep-wake cycles of H(1)R knockout (KO) mice and their arousal responses to an H(3)R antagonist. Under baseline conditions, H(1)R KO mice showed sleep-wake cycles essentially identical to those of WT mice but with fewer incidents of brief awakening (<16-sec epoch), prolonged durations of non-rapid eye movement (NREM) sleep episodes, a decreased number of state transitions between NREM sleep and wakefulness, and a shorter latency for initiating NREM sleep after an i.p. injection of saline. The H(1)R antagonist pyrilamine mimicked these effects in WT mice. When an H(3)R antagonist, ciproxifan, was administered i.p., wakefulness increased in WT mice in a dose-dependent manner but did not increase at all in H(1)R KO mice. In vivo microdialysis revealed that the i.p. application of ciproxifan increased histamine release from the frontal cortex in both genotypes of mice. These results indicate that H(1)R is involved in the regulation of behavioral state transitions from NREM sleep to wakefulness and that the arousal effect of the H(3)R antagonist completely depends on the activation of histaminergic systems through H(1)R.


Asunto(s)
Antagonistas de los Receptores Histamínicos/administración & dosificación , Imidazoles/administración & dosificación , Receptores Histamínicos H1/genética , Receptores Histamínicos H3/efectos de los fármacos , Sueño/efectos de los fármacos , Vigilia/fisiología , Animales , Electroencefalografía , Histamina/metabolismo , Masculino , Ratones , Ratones Noqueados , Sueño/fisiología
14.
Nat Neurosci ; 8(7): 858-9, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15965471

RESUMEN

Caffeine, a component of tea, coffee and cola, induces wakefulness. It binds to adenosine A1 and A2A receptors as an antagonist, but the receptor subtype mediating caffeine-induced wakefulness remains unclear. Here we report that caffeine at 5, 10 and 15 mg kg(-1) increased wakefulness in both wild-type mice and A1 receptor knockout mice, but not in A2A receptor knockout mice. Thus, caffeine-induced wakefulness depends on adenosine A2A receptors.


Asunto(s)
Nivel de Alerta/efectos de los fármacos , Nivel de Alerta/fisiología , Cafeína/farmacología , Estimulantes del Sistema Nervioso Central/farmacología , Receptor de Adenosina A2A/fisiología , Animales , Ratones , Ratones Noqueados , Vigilia/efectos de los fármacos , Vigilia/fisiología
15.
J Neurochem ; 92(6): 1542-9, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15748171

RESUMEN

The adenosine A(2A) receptor (A(2A)R) has been demonstrated to play a crucial role in the regulation of the sleep process. However, the molecular mechanism of the A(2A)R-mediated sleep remains to be elucidated. Here we used electroencephalogram and electromyogram recordings coupled with in vivo microdialysis to investigate the effects of an A(2A)R agonist, CGS21680, on sleep and on the release of histamine and GABA in the brain. In freely moving rats, CGS21680 applied to the subarachnoid space underlying the rostral basal forebrain significantly promoted sleep and inhibited histamine release in the frontal cortex. The histamine release was negatively correlated with the amount of non-rapid eye movement sleep (r = - 0.652). In urethane-anesthetized rats, CGS21680 inhibited histamine release in both the frontal cortex and medial pre-optic area in a dose-dependent manner, and increased GABA release specifically in the histaminergic tuberomammillary nucleus but not in the frontal cortex. Moreover, the CGS21680-induced inhibition of histamine release was antagonized by perfusion of the tuberomammillary nucleus with a GABA(A) antagonist, picrotoxin. These results suggest that the A(2A)R agonist induced sleep by inhibiting the histaminergic system through increasing GABA release in the tuberomammillary nucleus.


Asunto(s)
Agonistas del Receptor de Adenosina A2 , Adenosina/análogos & derivados , Histamina/metabolismo , Área Hipotalámica Lateral/efectos de los fármacos , Vías Nerviosas/efectos de los fármacos , Sueño/efectos de los fármacos , Ácido gamma-Aminobutírico/metabolismo , Adenosina/farmacología , Animales , Antihipertensivos/farmacología , Relación Dosis-Respuesta a Droga , Electroencefalografía , Electromiografía , Lóbulo Frontal/efectos de los fármacos , Lóbulo Frontal/metabolismo , Antagonistas del GABA/farmacología , Antagonistas de Receptores de GABA-A , Área Hipotalámica Lateral/metabolismo , Masculino , Microdiálisis , Inhibición Neural/efectos de los fármacos , Inhibición Neural/fisiología , Vías Nerviosas/metabolismo , Fenetilaminas/farmacología , Área Preóptica/efectos de los fármacos , Área Preóptica/metabolismo , Ratas , Ratas Sprague-Dawley , Receptor de Adenosina A2A/metabolismo , Receptores de GABA-A/metabolismo , Sueño/fisiología
17.
Drug News Perspect ; 17(2): 105-9, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15098064

RESUMEN

Although the molecular mechanisms underlying the control of sleep have been extensively studied in the past, relatively little attention has been paid to the regulatory mechanisms involved in the maintenance and control of wakefulness until today. In this article, recent developments leading to our better understanding of the arousal system will be reviewed with the main emphasis on three messengers: histamine, prostaglandin E(2) and orexin. The results reported herein may provide new insights into the molecular mechanisms of sleep-wake regulation and may lead to the development of new anti-sleep drugs as well as new hypnotic agents.


Asunto(s)
Proteínas Portadoras/fisiología , Dinoprostona/fisiología , Histamina/fisiología , Péptidos y Proteínas de Señalización Intracelular , Neuropéptidos/fisiología , Sueño/fisiología , Transmisión Sináptica/fisiología , Vigilia/fisiología , Animales , Humanos , Receptores de Orexina , Orexinas , Receptores Acoplados a Proteínas G , Receptores Histamínicos H1/fisiología , Receptores de Neuropéptido , Receptores de Prostaglandina E/fisiología , Subtipo EP4 de Receptores de Prostaglandina E
18.
Nihon Yakurigaku Zasshi ; 123(1): 5-13, 2004 Jan.
Artículo en Japonés | MEDLINE | ID: mdl-14695453

RESUMEN

Prostaglandin (PG) D synthase (PGDS) catalyzes the isomerization of PGH(2) to PGD(2), which acts as an endogenous somnogen and an allergic mediator. There are two distinct types of PGDS: one is lipocalin-type PGDS (L-PGDS) localized in the central nervous system, male genitals, and heart; and the other is hematopoietic PGDS (H-PGDS) in mast cells and Th2 lymphocytes. L-PGDS is the same as beta-trace, a major protein in human cerebrospinal fluid, and is also secreted into the seminal plasma and plasma. The L-PGDS concentration in various body fluids is useful as a marker for various diseases such as renal failure and coronary atherosclerosis. H-PGDS is a cytosolic enzyme and is a member of the Sigma class of glutathione S-transferase. We determined the X-ray crystallographic structures of H-PGDS and L-PGDS. We also generated the gene-knockout (KO) mice and the human enzyme-overexpressing transgenic mice for each PGDS. L-PGDS-KO mice lacked PGE(2)-induced tactile allodynia and rebound of non-rapid eye movement sleep after sleep deprivation. Human L-PGDS-overexpressing transgenic mice showed an increase in non-rapid eye movement sleep due to accumulation of PGD(2) in the brain after tail clipping. H-PGDS-KO mice showed an allergic reaction weaker than that of the wild-type mice.


Asunto(s)
Oxidorreductasas Intramoleculares/análisis , Oxidorreductasas Intramoleculares/fisiología , Animales , Humanos , Lipocalinas , Masculino , Ratones
20.
Biochem Biophys Res Commun ; 312(1): 29-34, 2003 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-14630012

RESUMEN

Adenosine is an endogenous hypnotic molecule. However, the mechanism by which the level of extracellular adenosine is regulated remains to be elucidated. We found by Northern hybridization and enzyme assay that ecto-5(')-nucleotidase and adenosine deaminase (ADA), major enzymes responsible for the production and degradation of adenosine, respectively, were localized most abundantly in the leptomeninges within the rat brain. Immunohistochemical study showed that ADA was dominantly localized in arachnoid barrier and trabecular cells of the leptomeninges. In vivo microdialysis demonstrated that externally applied adenosine was rapidly metabolized by ADA to inosine in the subarachnoid space. Perfusion of an ADA inhibitor, coformycin, increased the extracellular adenosine level in the subarachnoid space under the rostral basal forebrain. When coformycin was continuously infused into the subarachnoid space, non-rapid eye movement sleep was increased with prolonged duration of the sleep episode. These results demonstrate that the leptomeninges control the extracellular level of adenosine in the subarachnoid space by their high 5(')-nucleotidase and ADA activities and regulate non-rapid eye movement sleep.


Asunto(s)
Adenosina Desaminasa/metabolismo , Adenosina/metabolismo , Encéfalo/metabolismo , Coformicina/farmacología , Meninges/enzimología , Sueño/fisiología , Inhibidores de la Adenosina Desaminasa , Animales , Encéfalo/efectos de los fármacos , Espacio Extracelular/efectos de los fármacos , Espacio Extracelular/metabolismo , Masculino , Meninges/efectos de los fármacos , Prosencéfalo/efectos de los fármacos , Prosencéfalo/metabolismo , Ratas , Sueño/efectos de los fármacos , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...