Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
ACS Appl Mater Interfaces ; 16(38): 50507-50523, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39263871

RESUMEN

Immunoglobulin G (IgG) comprises a significant portion of the protein corona that forms on biomaterial surfaces and holds a pivotal role in modulating host immune responses. To shed light on the important relationship between biomaterial surface functionality, IgG adsorption, and innate immune responses, we prepared, using plasma deposition, four surface coatings with specific chemistries, wettability, and charge. We found that nitrogen-containing coatings such as these deposited from allylamine (AM) and 2-methyl-2-oxazoline (POX) cause the greatest IgG unfolding, while hydrophilic acrylic acid (AC) surfaces allowed for the retention of the protein structure. Structural changes in IgG significantly modulated macrophage attachment, migration, polarization, and the expression of pro- and anti-inflammatory cytokines. Unfolded IgG on the POX and AM surfaces enhanced macrophage attachment, migration, extracellular trap release, and pro-inflammatory factors production such as IL-6 and TNF-α. Retention of IgG structure on the AC surface downregulated inflammatory responses. The findings of this study demonstrate that the retention of protein structure is an essential factor that must be taken into consideration when designing biomaterial surfaces. Our study indicates that using hydrophilic surface coatings could be a promising strategy for designing immune-modulatory biomaterials for clinical applications.


Asunto(s)
Inmunoglobulina G , Propiedades de Superficie , Inmunoglobulina G/química , Inmunoglobulina G/inmunología , Ratones , Animales , Desplegamiento Proteico , Macrófagos/inmunología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Humanos , Células RAW 264.7 , Interacciones Hidrofóbicas e Hidrofílicas , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Adsorción , Citocinas/metabolismo , Citocinas/inmunología
2.
Cell Death Dis ; 15(8): 565, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39103348

RESUMEN

Autophagy is closely related to the occurrence and development of human malignancies; however, the detailed mechanisms underlying autophagy in cervical cancer require further investigation. Previously, we found that the ectopic expression of NCAPH, a regulatory subunit of condensed protein complexes, significantly enhanced the proliferation of tumor cells; however, the underlying mechanisms were unclear. Here, we revealed that NCAPH is a novel autophagy-associated protein in cervical cancer that promotes cell proliferation by inhibiting autophagosome formation and reducing autophagy, with no effect on the cell cycle, apoptosis, or aging. Tripartite motif-containing protein 21 (TRIM21) is well known to be involved in inflammation, autoimmunity and cancer, mainly via its E3 ubiquitin ligase activity. Mass spectrometry and immunoprecipitation assays showed that TRIM21 interacted with NCAPH and decreased the protein stability of NCAPH via ubiquitination at the K11 lysine residue. Structural domain mutation analysis revealed that TRIM21 combined with NCAPH through its PRY/SPRY and CC domains and accelerated the degradation of NCAPH through the RING domain. Furthermore, TRIM21 promoted autophagosome formation and reduced cell proliferation by inhibiting NCAPH expression and the downstream AKT/mTOR pathway in cervical cancer cells. Immunohistochemical staining revealed that the protein expression of TRIM21 was negatively correlated with that of NCAPH and positively correlated with that of beclin-1 in cervical cancer tissues. Therefore, we provide evidence for the role of the TRIM21-NCAPH axis in cervical cancer autophagy and proliferation and the involvement of the AKT/mTOR signaling pathway in this process. These results deepen our understanding of the carcinogenesis of cervical cancer, broaden the understanding of the molecular mechanisms of TRIM21 and NCAPH, and provide guidance for individualized treatment of cervical cancer in the future.


Asunto(s)
Autofagia , Proliferación Celular , Proteínas Proto-Oncogénicas c-akt , Ribonucleoproteínas , Transducción de Señal , Serina-Treonina Quinasas TOR , Ubiquitinación , Neoplasias del Cuello Uterino , Humanos , Neoplasias del Cuello Uterino/patología , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/genética , Femenino , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/genética , Línea Celular Tumoral , Animales , Células HeLa , Ratones , Ratones Desnudos
3.
J Adv Res ; 41: 63-75, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36328754

RESUMEN

INTRODUCTIONS: Excessive mechanical stress is closely associated with cell death in various conditions. Exposure of chondrocytes to excessive mechanical loading leads to a catabolic response as well as exaggerated cell death. Ferroptosis is a recently identified form of cell death during cell aging and degeneration. However, it's potential association with mechanical stress remains to be illustrated. OBJECTIVES: To identify whether excessive mechanical stress can cause ferroptosis. To explore the role of mechanical overloading in chondrocyte ferroptosis. METHODS: Chondrocytes were collected from loading and unloading zones of cartilage in patients with osteoarthritis (OA), and the ferroptosis phenotype was analyzed through transmission electron microscope and microarray. Moreover, the relationship between ferroptosis and OA was analyzed by GPX4-conditional knockout (Col2a1-CreERT: GPX4flox/flox) mice OA model and chondrocytes cultured with high strain mechanical stress. Furthermore, the role of Piezo1 ion channel in chondrocyte ferroptosis and OA development was explored by using its inhibitor (GsMTx4) and agonist (Yoda1). Additionally, chondrocyte was cultured in calcium-free medium with mechanical stress, and ferroptosis phenotype was tested. RESULTS: Human cartilage and mouse chondrocyte experiments revealed that mechanical overloading can induce GPX4-associated ferroptosis. Conditional knockout of GPX4 in cartilage aggravated experimental OA process, while additional treatment with ferroptosis suppressor protein (FSP-1) and coenzyme Q10 (CoQ10) abated OA development in GPX4-CKO mice. In mouse OA model and chondrocyte experiments, inhibition of Piezo1 channel activity increased GPX4 expression, attenuated ferroptosis phenotype and reduced the severity of osteoarthritis. Additionally, high strain mechanical stress induced ferroptosis damage in chondrocyte was largely abolished by blocking calcium influx through calcium-free medium. CONCLUSIONS: Our findings show that mechanical overloading induces ferroptosis through Piezo1 activation and subsequent calcium influx in chondrocytes, which might provide a potential target for OA treatment.


Asunto(s)
Cartílago Articular , Ferroptosis , Osteoartritis , Animales , Humanos , Ratones , Cartílago Articular/metabolismo , Condrocitos/metabolismo , Modelos Animales de Enfermedad , Canales Iónicos/metabolismo , Osteoartritis/genética , Osteoartritis/metabolismo , Estrés Mecánico
4.
Immunol Cell Biol ; 100(4): 250-266, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35188985

RESUMEN

The ongoing coronavirus disease 2019 (COVID-19) pandemic perpetuated by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has highlighted the continued need for broadly protective vaccines that elicit robust and durable protection. Here, the vaccinia virus-based, replication-defective Sementis Copenhagen Vector (SCV) was used to develop a first-generation COVID-19 vaccine encoding the spike glycoprotein (SCV-S). Vaccination of mice rapidly induced polyfunctional CD8 T cells with cytotoxic activity and robust type 1 T helper-biased, spike-specific antibodies, which are significantly increased following a second vaccination, and contained neutralizing activity against the alpha and beta variants of concern. Longitudinal studies indicated that neutralizing antibody activity was maintained up to 9 months after vaccination in both young and middle-aged mice, with durable immune memory evident even in the presence of pre-existing vector immunity. Therefore, SCV-S vaccination has a positive immunogenicity profile, with potential to expand protection generated by current vaccines in a heterologous boost format and presents a solid basis for second-generation SCV-based COVID-19 vaccine candidates incorporating additional SARS-CoV-2 immunogens.


Asunto(s)
COVID-19 , Vaccinia , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Inmunidad Celular , Inmunidad Humoral , Ratones , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/genética , Vacunación
5.
J Cell Physiol ; 237(1): 965-982, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34514592

RESUMEN

Previous studies have shown that administration of antimetabolite methotrexate (MTX) caused a reduced trabecular bone volume and increased marrow adiposity (bone/fat switch), for which the underlying molecular mechanisms and recovery potential are unclear. Altered expression of microRNAs (miRNAs) has been shown to be associated with dysregulation of osteogenic and/or adipogenic differentiation by disrupting target gene expression. First, the current study confirmed the bone/fat switch following MTX treatment in precursor cell culture models in vitro. Then, using a rat intensive 5-once daily MTX treatment model, this study aimed to identify miRNAs associated with bone damage and recovery (in a time course over Days 3, 6, 9, and 14 after the first MTX treatment). RNA isolated from bone samples of treated and control rats were subjected to miRNA array and reverse transcription-polymerase chain reaction validation, which identified five upregulated miRNA candidates, namely, miR-155-5p, miR-154-5p, miR-344g, miR-6215, and miR-6315. Target genes of these miRNAs were predicted using TargetScan and miRDB. Then, the protein-protein network was established via STRING database, after which the miRNA-key messenger RNA (mRNA) network was constructed by Cytoscape. Functional annotation and pathway enrichment analyses for miR-6315 were performed by DAVID database. We found that TGF-ß signaling was the most significantly enriched pathway and subsequent dual-luciferase assays suggested that Smad2 was the direct target of miR-6315. Our current study showed that miR-6315 might be a vital regulator involved in bone and marrow fat formation. Also, this study constructed a comprehensive miRNA-mRNA regulatory network, which may contribute to the pathogenesis/prognosis of MTX-associated bone loss and bone marrow adiposity.


Asunto(s)
MicroARNs , Animales , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Metotrexato/farmacología , MicroARNs/genética , MicroARNs/metabolismo , Osteogénesis/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas
6.
Eur J Med Chem ; 214: 113248, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33571827

RESUMEN

CDK8 regulates transcription either by phosphorylation of transcription factors or, as part of a four-subunit kinase module, through a reversible association of the kinase module with the Mediator complex, a highly conserved transcriptional coactivator. Deregulation of CDK8 has been found in various types of human cancer, while the role of CDK8 in supressing anti-cancer response of natural killer cells is being understood. Currently, CDK8-targeting cancer drugs are highly sought-after. Herein we detail the discovery of a series of novel pyridine-derived CDK8 inhibitors. Medicinal chemistry optimisation gave rise to 38 (AU1-100), a potent CDK8 inhibitor with oral bioavailability. The compound inhibited the proliferation of MV4-11 acute myeloid leukaemia cells with the kinase activity of cellular CDK8 dampened. No systemic toxicology was observed in the mice treated with 38. These results warrant further pre-clinical studies of 38 as an anti-cancer agent.


Asunto(s)
Antineoplásicos/farmacología , Quinasa 8 Dependiente de Ciclina/antagonistas & inhibidores , Diseño de Fármacos , Inhibidores de Proteínas Quinasas/farmacología , Piridinas/farmacología , Administración Oral , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Disponibilidad Biológica , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Quinasa 8 Dependiente de Ciclina/metabolismo , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Estructura Molecular , Inhibidores de Proteínas Quinasas/administración & dosificación , Inhibidores de Proteínas Quinasas/química , Piridinas/administración & dosificación , Piridinas/química , Ratas , Ratas Sprague-Dawley , Relación Estructura-Actividad
7.
PLoS Pathog ; 17(1): e1009215, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33439897

RESUMEN

Poxvirus systems have been extensively used as vaccine vectors. Herein a RNA-Seq analysis of intramuscular injection sites provided detailed insights into host innate immune responses, as well as expression of vector and recombinant immunogen genes, after vaccination with a new multiplication defective, vaccinia-based vector, Sementis Copenhagen Vector. Chikungunya and Zika virus immunogen mRNA and protein expression was associated with necrosing skeletal muscle cells surrounded by mixed cellular infiltrates. The multiple adjuvant signatures at 12 hours post-vaccination were dominated by TLR3, 4 and 9, STING, MAVS, PKR and the inflammasome. Th1 cytokine signatures were dominated by IFNγ, TNF and IL1ß, and chemokine signatures by CCL5 and CXCL12. Multiple signatures associated with dendritic cell stimulation were evident. By day seven, vaccine transcripts were absent, and cell death, neutrophil, macrophage and inflammation annotations had abated. No compelling arthritis signatures were identified. Such injection site vaccinology approaches should inform refinements in poxvirus-based vector design.


Asunto(s)
Vectores Genéticos/administración & dosificación , Inmunidad Innata/inmunología , Reacción en el Punto de Inyección/inmunología , Vacunación/métodos , Vacunas Sintéticas/administración & dosificación , Vaccinia/inmunología , Infección por el Virus Zika/inmunología , Animales , Femenino , Vectores Genéticos/genética , Genoma Viral , Ratones , Ratones Endogámicos C57BL , RNA-Seq , Vacunas Sintéticas/inmunología , Vaccinia/genética , Vaccinia/metabolismo , Vaccinia/virología , Virus Vaccinia/aislamiento & purificación , Vacunología , Virus Zika/aislamiento & purificación , Infección por el Virus Zika/genética , Infección por el Virus Zika/metabolismo , Infección por el Virus Zika/virología
8.
J Mol Biol ; 433(1): 166596, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-32693108

RESUMEN

There are many unanswered questions surrounding the function of immune cells and how they interact with the reproductive system to support successful pregnancy or contribute to pregnancy pathologies. While the role of immune cells such as uterine natural killer and dendritic cells, and more recently regulatory T cells has been established, the role of another major immune cell population, the B cell, and particularly the regulatory B cells, is relatively poorly understood. This review outlines what is known about B-cell subsets in the context of pregnancy, what constitutes a regulatory B cell and what role they may play, particularly during early pregnancy. Lastly, we discuss why immunotherapies for the treatment of pregnancy disorders is not widely progressed clinically and speculate on the potential of functional regulatory B cells as the basis of novel immunotherapeutic approaches for the treatment of immune-based pregnancy pathologies.


Asunto(s)
Linfocitos B Reguladores/inmunología , Linfocitos B Reguladores/metabolismo , Femenino , Humanos , Tolerancia Inmunológica , Inmunidad Humoral , Inmunomodulación , Inmunoterapia , Fenotipo , Embarazo , Investigación Biomédica Traslacional
9.
Cell Death Dis ; 11(12): 1049, 2020 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-33311486

RESUMEN

Cervical cancer is one of the most common gynecological tumors in the world, and human papillomavirus (HPV) infection is its causative agent. However, the molecular mechanisms involved in the carcinogenesis of cervical cancer still require clarification. Here we found that knockdown of Non-SMC (Structural Maintenance of Chromosomes) condensin I complex subunit H (NCAPH) gene expression significantly inhibited the proliferation, migration, invasion and epithelial-mesenchymal transition (EMT) of cervical cancer cells in vitro, and restrained xenograft tumor formation in vivo. Intriguingly, HPV E7 could form a positive feedback loop with NCAPH. E7 upregulated NCAPH gene expression via E2F1 which initiated NCAPH transcription by binding to its promoter directly. Silencing of NCAPH reduced E7 transcription via promoting the transition of AP-1 heterodimer from c-Fos/c-Jun to Fra-1/c-Jun. Moreover, the E7-mediated NCAPH overexpression was involved in the activation of the PI3K/AKT/SGK signaling pathway. In vivo, NCAPH expression in cervical cancer tissues was significantly higher than which in normal cervix and high-grade squamous intraepithelial lesion (HSIL) tissues, and its expression was significantly correlated with tumor size, depth of invasion and lymph node metastasis. Patients with high NCAPH expression had a significantly better survival outcomes than those with low-expression, suggesting that NCAPH-induced cell proliferation might sensitize cancer cells to adjuvant therapy. In conclusion, our results revealed the role of NCAPH in the carcinogenesis of cervical cancer in vitro and in vivo. The interaction between E7 and NCAPH expands the mechanism of HPV induced tumorigenesis and that of host genes regulating HPV E7.


Asunto(s)
Carcinogénesis/genética , Proteínas de Ciclo Celular/genética , Expresión Génica Ectópica , Proteínas Inmediatas-Precoces/metabolismo , Proteínas Nucleares/genética , Proteínas E7 de Papillomavirus/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Neoplasias del Cuello Uterino/genética , Adulto , Animales , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Factor de Transcripción E2F1/metabolismo , Transición Epitelial-Mesenquimal/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones Desnudos , Modelos Biológicos , Invasividad Neoplásica , Pronóstico , Regiones Promotoras Genéticas/genética , Unión Proteica , Multimerización de Proteína , Transducción de Señal , Factor de Transcripción AP-1/metabolismo , Resultado del Tratamiento , Ensayo de Tumor de Célula Madre , Neoplasias del Cuello Uterino/patología
10.
NPJ Vaccines ; 5(1): 44, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32550013

RESUMEN

The Sementis Copenhagen Vector (SCV) is a new vaccinia virus-derived, multiplication-defective, vaccine technology assessed herein in non-human primates. Indian rhesus macaques (Macaca mulatta) were vaccinated with a multi-pathogen recombinant SCV vaccine encoding the structural polyproteins of both Zika virus (ZIKV) and chikungunya virus (CHIKV). After one vaccination, neutralising antibody responses to ZIKV and four strains of CHIKV, representative of distinct viral genotypes, were generated. A second vaccination resulted in significant boosting of neutralising antibody responses to ZIKV and CHIKV. Following challenge with ZIKV, SCV-ZIKA/CHIK-vaccinated animals showed significant reductions in viremias compared with animals that had received a control SCV vaccine. Two SCV vaccinations also generated neutralising and IgG ELISA antibody responses to vaccinia virus. These results demonstrate effective induction of immunity in non-human primates by a recombinant SCV vaccine and illustrates the utility of SCV as a multi-disease vaccine platform capable of delivering multiple large immunogens.

11.
Theranostics ; 10(15): 7015-7033, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32550919

RESUMEN

Background: Intervertebral disc (IVD) degeneration is a common degenerative disease that can lead to collapse or herniation of the nucleus pulposus (NP) and result in radiculopathy in patients. Methods: NP tissue and cells were isolated from patients and mice, and the expression profile of cortistatin (CST) was analysed. In addition, ageing of the NP was compared between 6-month-old WT and CST-knockout (CST-/-) mice. Furthermore, NP tissues and cells were cultured to validate the role of CST in TNF-α-induced IVD degeneration. Moreover, in vitro and in vivo experiments were performed to identify the potential role of CST in mitochondrial dysfunction, mitochondrial ROS generation and activation of the NLRP3 inflammasome during IVD degeneration. In addition, NF-κB signalling pathway activity was tested in NP tissues and cells from CST-/- mice. Results: The expression of CST in NP cells was diminished in the ageing- and TNF-α-induced IVD degeneration process. In addition, compared with WT mice, aged CST-/- mice displayed accelerated metabolic imbalance and enhanced apoptosis, and these mice showed a disorganized NP tissue structure. Moreover, TNF-α-mediated catabolism and apoptosis were alleviated by exogenous CST treatment. Furthermore, CST inhibited mitochondrial dysfunction in NP cells through IVD degeneration and suppressed activation of the NLRP3 inflammasome. In vitro and ex vivo experiments indicated that increased NF-κB pathway activity might have been associated with the IVD degeneration observed in CST-/- mice. Conclusion: This study suggests the role of CST in mitochondrial ROS and activation of the NLRP3 inflammasome in IVD degeneration, which might shed light on therapeutic targets for IVD degeneration.


Asunto(s)
Inflamasomas/efectos de los fármacos , Degeneración del Disco Intervertebral/prevención & control , Mitocondrias/efectos de los fármacos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Neuropéptidos/farmacología , Núcleo Pulposo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Adulto , Anciano , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Humanos , Inflamasomas/metabolismo , Degeneración del Disco Intervertebral/metabolismo , Degeneración del Disco Intervertebral/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Mitocondrias/metabolismo , FN-kappa B/metabolismo , Núcleo Pulposo/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Adulto Joven
12.
Front Cell Dev Biol ; 8: 226, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32363191

RESUMEN

INTRODUCTION: High Mobility Group Box Protein 1 (HMGB1) is a DNA-binding protein that exerts inflammatory or pro-repair effects upon translocation from the nucleus. We postulate aberrant HMGB1 expression in immune-mediated necrotising myopathy (IMNM). METHODS: Herein, we compare HMGB1 expression (serological and sarcoplasmic) in patients with IMNM with that of other myositis subtypes using immunohistochemistry and ELISA. RESULTS: IMNM (n = 62) and inclusion body myositis (IBM, n = 14) patients had increased sarcoplasmic HMGB1 compared with other myositis patients (n = 46). Sarcoplasmic HMGB1 expression correlated with muscle weakness and histological myonecrosis, inflammation, regeneration and autophagy. Serum HMGB1 levels were elevated in patients with IMNM, dermatomyositis and polymositis, and those myositis patients with extramuscular inflammatory features. DISCUSSION: Aberrant HMGB1 expression occurs in myositis patients and correlates with weakness. A unique expression profile of elevated sarcoplasmic and serum HMGB1 was detected in IMNM.

13.
Am J Reprod Immunol ; 84(2): e13260, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32365239

RESUMEN

PROBLEM: Autism spectrum disorder (ASD)-like phenotypes in murine models are linked to elevated pro-inflammatory cytokine profiles caused by maternal immune activation (MIA), but whether MIA alters the immune response in the offspring remains unclear. METHOD OF STUDY: Polyinosinic:polycytidylic acid (poly:[IC]) was used to induce MIA in immunocompetent and control TLR3-deficient pregnant mice, and cytokine levels were measured in maternal and foetal organs. Furthermore, cytokines and behaviour responses were tested after challenge with lipopolysaccharide in 7-day-old and adult mice. RESULTS: MIA induced on E12 resulted in changes in the cytokine expression profile in maternal and foetal organs and correlated with TNFα and IL-18 dysregulation in immune organs and brains from neonatal mice born to MIA-induced dams. Such changes further correlated with altered behavioural responses in adulthood. CONCLUSION: MIA induced by pathogens during pregnancy can interfere with the development of the foetal immune and nervous systems leading to dysfunctional immune responses and behaviour in offspring.


Asunto(s)
Trastorno del Espectro Autista/inmunología , Enfermedades del Sistema Inmune/inmunología , Poli I-C/inmunología , Embarazo/inmunología , Efectos Tardíos de la Exposición Prenatal/inmunología , Virosis/inmunología , Animales , Trastorno del Espectro Autista/psicología , Conducta Animal , Hijo de Padres Discapacitados , Modelos Animales de Enfermedad , Femenino , Humanos , Enfermedades del Sistema Inmune/psicología , Inmunidad , Inmunidad Materno-Adquirida , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Efectos Tardíos de la Exposición Prenatal/psicología , Receptor Toll-Like 3/genética , Transcriptoma/inmunología , Virosis/psicología
14.
Vaccines (Basel) ; 8(2)2020 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-32380760

RESUMEN

Chikungunya virus (CHIKV), Ross River virus (RRV), o'nyong nyong virus (ONNV), Mayaro virus (MAYV) and Getah virus (GETV) represent arthritogenic alphaviruses belonging to the Semliki Forest virus antigenic complex. Antibodies raised against one of these viruses can cross-react with other serogroup members, suggesting that, for instance, a CHIKV vaccine (deemed commercially viable) might provide cross-protection against antigenically related alphaviruses. Herein we use human alphavirus isolates (including a new human RRV isolate) and wild-type mice to explore whether infection with one virus leads to cross-protection against viremia after challenge with other members of the antigenic complex. Persistently infected Rag1-/- mice were also used to assess the cross-protective capacity of convalescent CHIKV serum. We also assessed the ability of a recombinant poxvirus-based CHIKV vaccine and a commercially available formalin-fixed, whole-virus GETV vaccine to induce cross-protective responses. Although cross-protection and/or cross-reactivity were clearly evident, they were not universal and were often suboptimal. Even for the more closely related viruses (e.g., CHIKV and ONNV, or RRV and GETV), vaccine-mediated neutralization and/or protection against the intended homologous target was significantly more effective than cross-neutralization and/or cross-protection against the heterologous virus. Effective vaccine-mediated cross-protection would thus likely require a higher dose and/or more vaccinations, which is likely to be unattractive to regulators and vaccine manufacturers.

15.
Viruses ; 12(5)2020 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-32455939

RESUMEN

White adipose tissue (WAT) produces interleukin-10 and other immune suppressors in response to pathogen-associated molecular patterns (PAMPs). It also homes a subset of B-cells specialized in the production of IL-10, referred to as regulatory B-cells. We investigated whether viral stimuli, polyinosinic: polycytidylic acid (poly(I:C)) or whole replicative murine cytomegalovirus (MCMV), could stimulate the expression of IL-10 in murine WAT using in vivo and ex vivo approaches. Our results showed that in vivo responses to systemic administration of poly(I:C) resulted in high levels of endogenously-produced IL-10 and IL-21 in WAT. In ex vivo WAT explants, a subset of B-cells increased their endogenous IL-10 expression in response to poly(I:C). Finally, MCMV replication in WAT explants resulted in decreased IL-10 levels, opposite to the effect seen with poly(I:C). Moreover, downregulation of IL-10 correlated with relatively lower number of Bregs. To our knowledge, this is the first report of IL-10 expression by WAT and WAT-associated B-cells in response to viral stimuli.


Asunto(s)
Tejido Adiposo Blanco/metabolismo , Interleucina-10/metabolismo , Interleucinas/metabolismo , Muromegalovirus/efectos de los fármacos , Poli I-C/farmacología , Células 3T3 , Tejido Adiposo Blanco/patología , Animales , Citocinas/metabolismo , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptor Toll-Like 3/genética
16.
Inflammation ; 43(3): 1170-1171, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31912281

RESUMEN

The original version of this article was published with incorrect Fig. 1B. The correct Fig. 1B is now presented in Fig. 1 shown at the next page.

17.
Pharmaceutics ; 11(11)2019 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-31698755

RESUMEN

Delta inulin, also known as microparticulate inulin (MPI), was modified by covalently attaching doxorubicin to its nanostructured surface for use as a targeted drug delivery vehicle. MPI is readily endocytosed by monocytes, macrophages, and dendritic cells and in this study, we sought to utilize this property to develop a system to target anti-cancer drugs to lymphoid organs. We investigated, therefore, whether MPI could be used as a vehicle to deliver doxorubicin selectively, thereby reducing the toxicity of this antibiotic anthracycline drug. Doxorubicin was covalently attached to the surface of MPI using an acid-labile linkage to enable pH-controlled release. The MPI-doxorubicin conjugate was characterized using FTIR and SEM, confirming covalent attachment and indicating doxorubicin coupling had no obvious impact on the physical nanostructure, integrity, and cellular uptake of the MPI particles. To simulate the stability of the MPI-doxorubicin in vivo, it was stored in artificial lysosomal fluid (ALF, pH 4.5). Although the MPI-doxorubicin particles were still visible after 165 days in ALF, 53% of glycosidic bonds in the inulin particles were hydrolyzed within 12 days in ALF, reflected by the release of free glucose into solution. By contrast, the fructosidic bonds were much more stable. Drug release studies of the MPI-doxorubicin in vitro, demonstrated a successful pH-dependent controlled release effect. Confocal laser scanning microscopy studies and flow cytometric analysis confirmed that when incubated with live cells, MPI-doxorubicin was efficiently internalized by immune cells. An assay of cell metabolic activity demonstrated that the MPI carrier alone had no toxic effects on RAW 264.7 murine monocyte/macrophage-like cells, but exhibited anti-cancer effects against HCT116 human colon cancer cells. MPI-doxorubicin had a greater anti-cancer cell effect than free doxorubicin, particularly when at lower concentrations, suggesting a drug-sparing effect. This study establishes that MPI can be successfully modified with doxorubicin for chemotherapeutic drug delivery.

18.
Pharmaceutics ; 11(11)2019 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-31661841

RESUMEN

The use of particles for monocyte-mediated delivery could be a more efficient strategy and approach to achieve intracellular targeting and delivery of antitubercular drugs to host macrophages. In this study, the potential of inulin microparticles to serve as a drug vehicle in the treatment of chronic tuberculosis using a monocytes-mediated drug targeting approach was evaluated. Isoniazid (INH) was conjugated to inulin via hydrazone linkage in order to obtain a pH-sensitive inulin-INH conjugate. The conjugate was then characterized using proton nuclear magnetic resonance (1HNMR), Fourier transform infrared spectroscopy (FTIR) as well as in vitro, cellular uptake and intracellular Mycobacterium tuberculosis (Mtb) antibacterial efficacy. The acid-labile hydrazone linkage conferred pH sensitivity to the inulin-INH conjugate with ~95, 77 and 65% of the drug released after 5 h at pH 4.5, 5.2, and 6.0 respectively. Cellular uptake studies confirm that RAW 264.7 monocytic cells efficiently internalized the inulin conjugates into endocytic compartments through endocytosis. The intracellular efficacy studies demonstrate that the inulin conjugates possess a dose-dependent targeting effect against Mtb-infected monocytes. This was through efficient internalization and cleavage of the hydrazone bond by the acidic environment of the lysosome, which subsequently released the isoniazid intracellularly to the Mtb reservoir. These results clearly suggest that inulin conjugates can serve as a pH-sensitive intracellular drug delivery system for TB treatment.

19.
Exp Ther Med ; 18(5): 3271-3280, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31602200

RESUMEN

Sepsis is a highly complex and often fatal syndrome which varies widely in its clinical manifestations, and therapies that target the underlying uncontrolled immune status in sepsis are needed. The failure of preclinical approaches to provide significant sepsis survival benefit in the clinic is often attributed to inappropriate animal disease models. It has been demonstrated that high mobility group box protein 1 (HMGB1) blockade can reduce inflammation, mortality and morbidity in experimental sepsis without promoting immunosuppression. Within this study, we explored the use of ovine anti-HMGB1 antibodies in a model of ovine septic shock incorporating intensive care supports (OSSICS). Results: Septic sheep exhibited elevated levels of HMGB1 within 12 h after the induction of sepsis. In this study, sepsis was induced in six anaesthetized adult Border Leicester × Merino ewes via intravenous instillation of E. coli and sheep monitored according to intensive care unit standard protocols for 26 h, with the requirement for noradrenaline as the primary endpoint. Septic sheep exhibited a hyperdynamic circulation, renal dysfunction, deranged coagulation profile and severe metabolic acidosis. Sheep were assigned a severity of illness score, which increased over time. While a therapeutic effect of intravenous anti-HMGB1 antibody could not be observed in this model due to limited animal numbers, a reduced bacterial dose induced a septic syndrome of much lower severity. With modifications including a reduced bacterial dose, a longer timeframe and broad spectrum antibiotics, the OSSICS model may become a robust tool for preclinical assessment of sepsis therapeutics.

20.
Am J Reprod Immunol ; 82(6): e13187, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31487409

RESUMEN

PROBLEM: A successful outcome to pregnancy is critically dependent on the initiation of maternal immune tolerance before embryo implantation. Cells of embryonic origin that come in contact with the uterine microenvironment can exert influence over the phenotype and function of immune cells to facilitate robust implantation; however, what influence they may have on B cells remains unknown. In this study, we investigate the effect of human trophoblast cells on B-cell phenotype and the subsequent effect on peri-implantation events. METHOD OF STUDY: We cultured purified human B cells with the first-trimester human trophoblast cell line Swan 71 to investigate trophoblast-B-cell interactions and utilized trophoblast spheroids in an in vitro implantation model of migration and invasion. RESULTS: Trophoblast-educated B cells or TE-B cells were found to consist of B cells in committed lineages such as plasmablasts and memory B cells, as well as increased proportions in subsets of CD24hi CD27+ regulatory B cells and CD19+ IL-10+ B cells. Conditioned media from the TE-B cells showed reduced production of pro-inflammatory cytokines that influenced the T-cell proliferation and cytokine production. Using trophoblast spheroids, we assessed the role of TE-B cells in trophoblast invasion and migration. Our results demonstrate a protective effect of TE-B-conditioned media against deleterious inflammation as evidenced by survival of the trophoblast spheroid in the presence of an immune assault and promotion of a migratory phenotype. CONCLUSION: We posit that trophoblast-mediated education of B cells leads to their acquisition of properties capable of modulating inflammation in the uterine environment during the peri-implantation period.


Asunto(s)
Linfocitos B Reguladores/inmunología , Linfocitos T/inmunología , Trofoblastos/inmunología , Linfocitos B Reguladores/patología , Línea Celular , Técnicas de Cocultivo , Femenino , Humanos , Memoria Inmunológica , Inflamación/inmunología , Inflamación/patología , Linfocitos T/patología , Trofoblastos/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA