Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Cancer Res Clin Oncol ; 150(6): 320, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38914803

RESUMEN

PURPOSE: Tumor-associated macrophages (TAMs) play a critical role in hepatocellular carcinoma (HCC) progression and metastasis. Systematic investigation of the cross-talk between TAMs and HCC may help in searching for the critical target to guard against HCC metastasis. METHODS AND RESULTS: Herein, we found that TREM1 highly expressed in HCC tissue by analyzing the data obtain from GEO database. Interestingly, the results indicated that TREM1 was primarily expressed by monocytes. Immune infiltration studies further validated that TREM1 expression was positively related with increased infiltration of macrophages in HCC tissues. In vitro, we observed that TREM1 knockdown significantly abrogated the effect of TAMs in promoting the metastasis and epithelial-mesenchymal transition (EMT) of HCC cells. Additionally, cytokine array detection identified CCL7 as the main responsive cytokine following with TREM1 knockdown in TAMs. CONCLUSION: Taken together, our findings strongly suggested that high expression of TREM1 was positively associated with metastasis and poor prognosis of HCC. Furthermore, TAMs expressing TREM1 contribute to EMT-based metastasis through secreting CCL7. These results provide a novel insight into the potential development of targeting the TREM1/CCL7 pathway for preventing metastatic HCC.


Asunto(s)
Carcinoma Hepatocelular , Transición Epitelial-Mesenquimal , Neoplasias Hepáticas , Receptor Activador Expresado en Células Mieloides 1 , Femenino , Humanos , Masculino , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Metástasis de la Neoplasia , Pronóstico , Receptor Activador Expresado en Células Mieloides 1/metabolismo , Receptor Activador Expresado en Células Mieloides 1/genética , Macrófagos Asociados a Tumores/metabolismo , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/patología
2.
Front Cell Dev Biol ; 9: 738709, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34722520

RESUMEN

Pancreatic cancer is one of the major malignancies and causes of mortality worldwide. E3 ubiquitin-protein ligases transfer activated ubiquitin from ubiquitin-conjugating enzymes to protein substrates and confer substrate specificity in cancer. In this study, we first downloaded data from The Cancer Genome Atlas pancreatic adenocarcinoma dataset, acquired all 27 differentially expressed genes (DEGs), and identified genomic alterations. Then, the prognostic significance of DEGs was analyzed, and eight DEGs (MECOM, CBLC, MARCHF4, RNF166, TRIM46, LONRF3, RNF39, and RNF223) and two clinical parameters (pathological N stage and T stage) exhibited prognostic significance. RNF223 showed independent significance as an unfavorable prognostic marker and was chosen for subsequent analysis. Next, the function of RNF223 in the pancreatic cancer cell lines ASPC-1 and PANC-1 was investigated, and RNF223 silencing promoted pancreatic cancer growth and migration. To explore the potential targets and pathways of RNF223 in pancreatic cancer, quantitative proteomics was applied to analyze differentially expressed proteins, and metabolism-related pathways were primarily enriched. Finally, the reason for the elevated expression of RNF223 was analyzed, and KLF4 was shown to contribute to the increased expression of RNF233. In conclusion, this study comprehensively analyzed the clinical significance of E3 ligases. Functional assays revealed that RNF223 promotes cancer by regulating cell metabolism. Finally, the elevated expression of RNF223 was attributed to KLF4-mediated transcriptional activation. This study broadens our knowledge regarding E3 ubiquitin ligases and signal transduction and provides novel markers and therapeutic targets in pancreatic cancer.

3.
Artif Cells Nanomed Biotechnol ; 47(1): 2830-2837, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31298047

RESUMEN

Abnormal expression of microRNAs (miRNAs) contributes to tumour growth and invasion. MiR-326 expression often down-regulates in several kinds of cancer and low expression of miR-326 is linked with poor prognosis in cancer patients. In the present study, we aimed to explore the modulatory mechanism of miR-326 in hepatocellular carcinoma (HCC). miR-326 expression was significantly decreased in HCC cell lines and tissues. miR-326 decreased HCC cell growth by affecting cell-cycle progression and by promoting apoptosis. In addition, miR-326 inhibited HCC cell invasion by decreasing the EMT phenotype. We found that miR-326 functioned as a tumour suppressor by repressing its down-stream target PDK1. C-myc contributed to miR-326 down-regulation through binding at its promoter and inhibited its expression. Based on these results, we conducted a therapeutic experiment by using gold nano-particles (AuNPs) carrying miR-326. Restoration of miR-326 reduced tumour growth in vivo. Our findings suggest that miR-326 may be a candidate prognostic biomarker and a target for new therapies in HCC patients.


Asunto(s)
Carcinoma Hepatocelular/patología , Oro/química , Nanopartículas del Metal/química , MicroARNs/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Portadores de Fármacos/química , Transición Epitelial-Mesenquimal/genética , Humanos , Neoplasias Hepáticas/patología , MicroARNs/química , Terapia Molecular Dirigida
4.
J Cell Mol Med ; 22(11): 5477-5485, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30133116

RESUMEN

Recently, it was reported that long non-coding RNAs (lncRNAs) participated in promoting hepatocellular carcinoma (HCC) initiation and progression. Herein, we reported that the expression level of LINC01287 was elevated in HCC cell lines and tissues. LINC01287 down-regulation inhibited HCC cells growth and invasion both in vitro and in vivo. LINC01287 exerted as a ceRNA and negatively regulated miR-298 expression. MYB was identified as a downstream target of miR-298. The miR-298/MYB axis mediated LINC01287's effect on HCC. To the best of our knowledge, our findings provided the first evidence that LINC01287 functioned as an oncogene in HCC. LINC01287 may be a candidate prognostic biomarker and a target for new therapies in HCC patients.


Asunto(s)
Carcinoma Hepatocelular/genética , MicroARNs/genética , Proteínas Proto-Oncogénicas c-myb/genética , ARN Largo no Codificante/genética , Animales , Carcinogénesis/genética , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Transición Epitelial-Mesenquimal/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Células Hep G2 , Xenoinjertos , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Masculino , Ratones , Persona de Mediana Edad , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología
5.
J Exp Clin Cancer Res ; 37(1): 149, 2018 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-30001751

RESUMEN

BACKGROUND: The long non-coding RNAs (lncRNAs) have participated in the promotion of hepatocellular carcinoma (HCC) initiation and progression. Nevertheless, the biological role and underlying mechanism of LINC01287 in HCC has never been reported. METHODS: The TGCA database was used to explore the abnormal expression of lncRNAs in HCC. Real-time PCR and in situ hybridization assays were used to examine the expression of LINC01287 in HCC tissues. The clinicopathological characteristics of HCC patients in relation to LINC01287 expression were then analyzed. Infection of cells with the si-LINC01287 lentiviral vector was performed to down-regulate LINC01287 expression in HCC cells. MTT and colony formation assays were performed to examine cell growth ability, and FACS analysis was performed to examine the cell cycle and apoptosis. A Boyden assay was used to examine HCC cell invasion ability, and RNA immunoprecipitation tested the interaction between LINC01287 and miR-298. A luciferase reporter assay was used to examine whether STAT3 was a direct target of miR-298, and chromatin immunoprecipitation (ChIP) was used to examine the potential binding of c-jun to the miR-298 promoter. RESULTS: We revealed that the expression of LINC01287 was increased in HCC cell lines, as well as tissues. Knockdown of LINC01287 decreased HCC cell growth and invasion both in vitro and in vivo. LINC01287 can negatively regulate miR-298 expression by acting as a ceRNA. miR-298 directly targeted STAT3 and inhibited its expression. LINC01287 exerted its function via the miR-298/STAT3 axis in HCC. Interestingly, STAT3 elevated LINC01287 expression via c-jun, which bound to the LINC01287 promoter. A feedback loop was also discovered between LINC01287 and the miR-298/STAT3 axis. CONCLUSIONS: Our data indicated that LINC01287 played an oncogenic role in HCC growth and metastasis and that this lncRNA might serve as a novel molecular target for the treatment of HCC.


Asunto(s)
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , MicroARNs/metabolismo , Factor de Transcripción STAT3/metabolismo , Carcinoma Hepatocelular/patología , Transición Epitelial-Mesenquimal , Femenino , Humanos , Neoplasias Hepáticas/patología , Masculino , Fenotipo , Transfección
6.
Tumour Biol ; 39(2): 1010428317690999, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28231734

RESUMEN

Abnormal expression of long non-coding RNA often contributes to unrestricted growth of cancer cells. Long non-coding RNA XIST expression is upregulated in several cancers; however, its modulatory mechanisms have not been reported in hepatocellular carcinoma. In this study, we found that XIST expression was significantly increased in hepatocellular carcinoma tissues and cell lines. XIST promoted cell cycle progression from the G1 phase to the S phase and protected cells from apoptosis, which contributed to hepatocellular carcinoma cell growth. In addition, we revealed that there was reciprocal repression between XIST and miR-139-5p. PDK1 was identified as a direct target of miR-139-5p. We proposed that XIST was responsible for hepatocellular carcinoma cell proliferation, and XIST exerted its function through the miR-139-5p/PDK1 axis.


Asunto(s)
Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , MicroARNs/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Largo no Codificante/biosíntesis , Animales , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Estudios de Casos y Controles , Línea Celular Tumoral , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , MicroARNs/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA