Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Infect Drug Resist ; 15: 5137-5148, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36082242

RESUMEN

Background: blaNDM-1-producing Acinetobacter baumannii (BP-AB) remains a critical problem in nosocomial infections, because of its resistance mediated by the biofilm formation and virulence factors. No studies have confirmed myrtenol's efficacy in inhibiting the biofilm formation and virulence associated with biofilm of BP-AB. Methods: The tested concentrations of myrtenol were wild type (A), 50 µg/mL (B), 100 µg/mL (C), 200 µg/mL (D), 250 µg/mL (E), and 300 µg/mL (F). Results: The BP-AB biofilm inhibition was significantly higher in the D, E, and F groups than in the A, B, and C groups. Myrtenol significantly reduced the air-liquid interface ring formation in glass tubes. It also effectively inhibited the attachment of BP-AB strains on polystyrene surfaces as shown by crystal violet staining. Microscopy showed a significant reduction in biofilm formation with dispersed BP-AB strains. The confocal laser scanning microscopy analysis showed a significant reduction in the biofilm's biomass, covered surface area, and thickness. The scanning electron microscopy analysis revealed significantly fewer BP-AB aggregates on the coverslip surface. In the CompStat analysis, the biofilm's biomass, maximum thickness, and surface-to-volume ratio were significantly reduced. The qPCR analysis revealed a significant down-regulation of bfmR, bap, csuA/B, and ompA expression, which positively correlated with the biofilm's biomass, maximum thickness, and surface-to-volume ratio in BP-AB strains. Myrtenol significantly improved the susceptibility of BP-AB to the antibiotics amikacin, piperacillin/tazobactam, cefoperazone/sulbactam, and ceftazidime. Conclusion: Myrtenol attenuates the BP-AB biofilm formation and virulence by suppressing the expression of bfmR, bap, csuA/B, and ompA.

2.
Guang Pu Xue Yu Guang Pu Fen Xi ; 32(4): 1090-3, 2012 Apr.
Artículo en Chino | MEDLINE | ID: mdl-22715791

RESUMEN

In the present work, CdS quantum dots (QDs) were successfully biosynthesized at room temperature by using saccharomyces cerevisiae yeast as a carrier. Fluorescence emission spectra, ultraviolet-visible (UV/Vis) absorption spectra, and inverted fluorescence microscope images confirmed that saccharomyces cerevisiae can be used to biosynthesize CdS QDs. The as-prepared CdS QDs show the fluorescence emission peak at 443 nm and emit blue-green fluorescence under UV light (with excitation at 365 nm). Transmission electron microscopy (TEM) was applied to characterize the as-prepared CdS QDs and the TEM results showed that the as-prepared CdS QDs had the structure of hexagonal wurtzite. Fluorescence emission spectrum and UV/Vis absorption spectrum were used as the performance indicatiors to study the effects of saccharomyces cerevisiae yeast incubation times, reactant Cd2+ concentrations and reaction times on CdS QDs synthesis. Saccharomyces cerevisiae yeast grown in early stable phase can get the highest fluorescence intensity of CdS QDs when they were co-cultured with 0.5 mmol x L(-1) of Cd2+ with 24 h incubation time. Furthermore, much more CdS QDs can be obtained by changing the culture medium during the synthesis process.


Asunto(s)
Compuestos de Cadmio/metabolismo , Puntos Cuánticos/metabolismo , Saccharomyces cerevisiae/metabolismo , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Espectrometría de Fluorescencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...