Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 15: 1410195, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39144208

RESUMEN

Anthropogenic activities are driving significant changes in coastal ecological environments, increasingly spotlighting microorganisms associated with seagrass bed ecosystems. Labyrinthula is primarily recognized as a saprophytic protist associated with marine detritus, and it also acts as an opportunistic pathogen affecting marine algae, terrestrial plants and mollusks, especially in coastal environments. The genus plays a key role in the decomposition of marine detritus, facilitated by its interactions with diatoms and through the utilization of a diverse array of carbohydrate-active enzymes to decompose seagrass cell walls. However, human activities have significantly influenced the prevalence and severity of seagrass wasting disease (SWD) through factors such as climate warming, increased salinity and ocean acidification. The rise in temperature and salinity, exacerbated by human-induced climate change, has been shown to increase the susceptibility of seagrass to Labyrinthula, highlighting the adaptability of pathogen to environmental stressors. Moreover, the role of seagrass in regulating pathogen load and their immune response to Labyrinthula underscore the complex dynamics within these marine ecosystems. Importantly, the genotype diversity of seagrass hosts, environmental stress factors and the presence of marine organisms such as oysters, can influence the interaction mechanisms between seagrass and Labyrinthula. Besides, these organisms have the potential to both mitigate and facilitate pathogen transmission. The complexity of these interactions and their impacts driven by human activities calls for the development of comprehensive multi-factor models to better understand and manage the conservation and restoration of seagrass beds.

2.
Front Microbiol ; 15: 1454948, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39132132

RESUMEN

Phytoplankton blooms have become a global concern due to their negative impacts on public health, aquaculture, tourism, and the economic stability of coastal regions. Therefore, elucidating the shifts in phytoplankton community structure and abundance, as well as their environmental drivers, is crucial. However, existing studies often fail to capture the detailed dynamics of phytoplankton blooms and their environmental triggers due to low temporal observation resolution. In this study, high temporal resolution (daily) samples were collected over 43 days to investigate the influence of environmental factors on phytoplankton in Qinhuangdao in the summer. During the observation period, a total of 45 phytoplankton species were identified, comprising 26 Bacillariophyta species, 16 Dinophyta species, 2 Euglenophyta species, and 1 Chromophyta species. Interestingly, a lag bloom pattern of phytoplankton behind freshwater input was observed across day-to-day samples. Phytoplankton blooms typically lagged 1-3 days behind periods of decreased salinity and nutrient input, suggesting that freshwater influx provides the foundational materials and benefits for these blooms. Moreover, the phytoplankton blooms were triggered by six dominant species, i.e., Chaetoceros spp., Pseudo-nitzschia delicatissima, Skeletonema costatum, Protoperdinium spp., Leptocylindrus minimus, Pseudo-nitzschia pungens, and Thalassiosira spp. Consequently, the succession of phytoplankton showed a predominant genera shift in the following sequence: Nitzschia, Protoperdinium, and Prorocentrum - Skeletonema - Pseudo-nitzschia - Gymnodinium - Leptocylindrus. Besides that, a deterministic process dominated phytoplankton community assembly across time series, and DIP is a key factor in shifting the phytoplankton community structures in this area. In summary, our study offers high-resolution observations on the succession of phytoplankton communities and sheds light on the complex and differentiated responses of phytoplankton to environmental factors. These findings enhance our understanding of the dynamics of phytoplankton blooms and their environmental drivers, which is essential for the effective management and mitigation of their adverse impacts.

3.
Front Microbiol ; 15: 1433724, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39021631

RESUMEN

Microplastics (MPs) have been widely found in the environment and have exerted non-negligible impacts on the environment and human health. Extensive research has shown that MPs can act as carriers for viruses and interacts with them in various ways. Whether MPs influence the persistence, transmission and infectivity of virus has attracted global concern in the context of increasing MPs contamination. This review paper provides an overview of the current state of knowledge regarding the interactions between MPs and viruses in aquatic environments. Latest progress and research trends in this field are summarized based on literature analysis. Additionally, we discuss the potential risks posed by microplastic-associated viruses to human health and the environmental safety, highlighting that MPs can affect viral transmission and infectivity through various pathways. Finally, we underscores the need for further research to address key knowledge gaps, such as elucidating synergistic effects between MPs and viruses, understanding interactions under real environmental conditions, and exploring the role of biofilms in virus-MPs interactions. This review aims to contribute to a deeper understanding on the transmission of viruses in the context of increasing MPs pollution in water, and promote actions to reduce the potential risks.

4.
Sci Total Environ ; 817: 153004, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35026254

RESUMEN

Marine suspended particles are unique micro-habitats for diverse microbes and also hotspots of microbially metabolic activities. However, the association of bacterial pathogens, especially those carrying antibiotic resistance genes (ARGs), with these particles remain largely unknown in coastal habitats. This study investigated the distribution of pathogen-related bacteria and ARGs in particle-associated (PA) and free-living (FL) fractions of samples collected at three coastal beaches using NextGen sequencing and qPCR. Suspended particles were found to harbor significantly higher abundances of bacteria of pathogen-related genera and ARGs than their counterparts. Functional analysis of microbial community suggested that antibiotic biosynthetic pathways were also more abundant among PA microbiome comparing to FL microbial community, which further facilitated the spread of ARGs. Additionally, 13 pathogen-related genera co-occurred with ARG in PA fraction while only 2 pathogen-related genera co-occurred with ARGs in FL fraction. Overall, our research revealed suspended particles harbored more abundant pathogen-related genera and ARGs comparing with surrounding waters. Thus, suspended particles are hotspots for pathogen-related genera and ARGs and may pose a greater threat to human health in coastal beach.


Asunto(s)
Antibacterianos , Microbiota , Antibacterianos/farmacología , Bacterias/genética , China , Farmacorresistencia Microbiana/genética , Genes Bacterianos , Humanos
5.
Sci Total Environ ; 663: 400-407, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-30716630

RESUMEN

With the escalating coastal development and loss of vegetated landscape, the volume of storm runoff increases significantly in Chinese coastal cities. To protect human health and valuable recreational resources, it is necessary to develop a quantitative understanding of coastal pollution. Here we studied the influence of storm runoff on the nutrients and microbial pathogens at two popular bathing beaches in northern China. Dongshan Beach, located near the mouth of an urban river, is influenced by non-point source pollution while Tiger-Rock Beach, a coastal beach, is primarily influenced by a point source from a storm drain outfall. Storm runoff significantly (P < 0.001) decreased the salinity and Chl a post-storm at both the beaches, but only reduced the concentration of dissolved inorganic N at Tiger-Rock Beach. Escherichia coli decreased by 68.7% at Dongshan Beach, possibly due to the dilution effect of the stormflow, contradicting the notion of elevated fecal contamination in coastal beaches from storm runoff. Vibrio parahaemolyticus increased at both beaches post-storm, by 155.7% at Dongshan Beach and 136.7% at Tiger-Rock Beach. Regardless of storm impact, both E. coli and V. parahaemolyticus were much higher at Dongshan Beach than that at Tiger-Rock, suggesting the influence of different surrounding topographies. Lastly, the statistical models developed based on the environmental and microbial parameters regression showed predictive power (adjusted R2 > 0.5) to estimate the concentration of E. coli at Dongshan Beach and V. parahaemolyticus at Tiger-Rock Beach. Overall, the results suggest the unique role of the individual beaches in attenuating the effect of rainfall on the concentration of microbial pathogens in bathing water quality and provide unique predictive models for recreational water management and public health protection.


Asunto(s)
Playas , Microbiota , Lluvia , Microbiología del Agua , Movimientos del Agua , Calidad del Agua , Bacterias/aislamiento & purificación , China , Escherichia coli/aislamiento & purificación , Microscopía Fluorescente , Vibrio parahaemolyticus/aislamiento & purificación
6.
Ecotoxicol Environ Saf ; 161: 78-84, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29859411

RESUMEN

The toxicity of heavy metals (HMs) to soil enzymes is directly influenced by the status of the enzyme (free vs. immobilized on minerals) and the duration of exposure. However, little information is available on the interaction effect of HMs, mineral, and exposure time on soil enzyme activities. We investigated the interaction mechanism of alkaline phosphatase (ALP) with minerals (montmorillonite and goethite) and the response of free and immobilized ALP to cadmium (Cd) toxicity under different exposure times. The adsorption isotherms of ALP on both minerals were L-type. The maximum adsorption capacity of goethite for ALP was 3.96 times than montmorillonite, although both had similar adsorption constant (K). Goethite showed a greater inhibitory effect on ALP activity than montmorillonite. The toxicity of Cd to free- and goethite-ALP was enhanced with increasing exposure time, indicating a time-dependent inhibition. However, Cd toxicity to montmorillonite-ALP was not affected by the exposure time. The inhibition of Cd to soil enzyme activity is influenced by the properties of mineral complexes and the duration of exposure. A further understanding of the time pattern of HMs toxicity is helpful for accurately assessing the hazards of HMs to soil enzyme activity.


Asunto(s)
Fosfatasa Alcalina/metabolismo , Bentonita/química , Cadmio/toxicidad , Compuestos de Hierro/química , Minerales/química , Contaminantes del Suelo/toxicidad , Suelo/química , Adsorción , Cadmio/química , Metales Pesados/química , Metales Pesados/toxicidad
7.
Mar Pollut Bull ; 124(1): 411-420, 2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-28779889

RESUMEN

In this study, we investigated the environmental impacts of scallop culture on two coastal estuaries adjacent the Bohai Sea including developing a quantitative PCR assay to assess the abundance of the bacterial pathogens Escherichia coli and Vibrio parahaemolyticus. Scallop culture resulted in a significant reduction of nitrogen, Chlorophyll a, and phosphorous levels in seawater during summer. The abundance of bacteria including V. parahaemolyticus varied significantly across estuaries and breeding seasons and was influenced by nitrate as well as nutrient ratios (Si/DIN, N/P). Bacterioplankton diversity varied across the two estuaries and seasons, and was dominated by Proteobacteria, Cyanobacteria, Actinobacteria, Bacteroidetes. Overall, this study suggests a significant influence of scallop culture on the ecology of adjacent estuaries and offers a sensitive tool for monitoring scallop contamination.


Asunto(s)
Acuicultura , Pectinidae , Agua de Mar/microbiología , Microbiología del Agua , Contaminantes del Agua/análisis , Animales , Bacterias/aislamiento & purificación , China , Clorofila/análisis , Clorofila A , Monitoreo del Ambiente , Estuarios , Nitrógeno/análisis , Fósforo/análisis , Plancton , Estaciones del Año , Agua de Mar/análisis
8.
Chemosphere ; 169: 324-332, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27886534

RESUMEN

Dehydrogenase activity (DHA) is an important indicator of heavy metal toxicity in contaminated soils. Different instances of DHA were determined using various substrates and which could affect the description of heavy metal toxicity. Currently, too few investigations have been done on selecting appropriate substrates. This study employed indoor simulation to determine soil DHA and its response to external cadmium (Cd) using two substrates (TTC and INT). Hormesis for DHA obtained using the TTC method (DHA-TTC) in low Cd concentration was observed which was quickly inhibited in high Cd concentration. While DHA obtained using the INT method (DHA-INT) decreased slowly when Cd concentration increased. The DHA-TTC and DHA-INT in soils at Cd concentration of 500 mg kg-1 decreased 86% and 53%, respectively, compared to the control. The dose-response relationship of Cd to DHA can be well simulated using the logistic model (p < 0.01), which indicated DHA could be used to indicate soil Cd toxicity. Multiple stepwise regression analysis revealed that total organic matter (TOC) is the major factor influencing the toxicity of Cd to DHA-TTC, while TOC, pH and cation exchange capacity (CEC) are major factors influencing the toxicity of Cd to DHA-INT. The different responses of soil DHA-TTC and DHA-INT to Cd are due to the differences in electron transport chain characteristics between TTC and INT, as well as the influence of soil properties. Although both DHA-TTC and DHA-INT can monitor soil Cd contamination, DHA-INT is recommended as a superior bio-indicator to indicate and assess contamination of Cd in soil.


Asunto(s)
Cadmio/toxicidad , Intoxicación por Metales Pesados , Oxidorreductasas/metabolismo , Intoxicación , Contaminantes del Suelo/análisis , Suelo/química , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA