Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 112022 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-36503602

RESUMEN

Microtubules are tubes of about 25 nm in diameter that are critically involved in a variety of cellular functions, including motility, compartmentalization, and division. They are considered as pseudo-helical polymers whose constituent αß-tubulin heterodimers share lateral homotypic interactions, except at one unique region called the seam. Here, we used a segmented sub-tomogram averaging strategy to reassess this paradigm and analyze the organization of the αß-tubulin heterodimers in microtubules assembled from purified porcine brain tubulin in the presence of GTP and GMPCPP, and in Xenopus egg cytoplasmic extracts. We find that in almost all conditions, microtubules incorporate variable protofilament and/or tubulin subunit helical-start numbers, as well as variable numbers of seams. Strikingly, the seam number and location vary along individual microtubules, generating holes of one to a few subunits in size within their lattices. Together, our results reveal that the formation of mixed and discontinuous microtubule lattices is an intrinsic property of tubulin that requires the formation of unique lateral interactions without longitudinal ones. They further suggest that microtubule assembly is tightly regulated in a cytoplasmic environment.


Asunto(s)
Microtúbulos , Tubulina (Proteína) , Animales , Porcinos , Tubulina (Proteína)/metabolismo , Xenopus laevis/metabolismo , Microtúbulos/metabolismo , Citoplasma/metabolismo , Encéfalo/metabolismo
2.
Int J Mol Sci ; 23(19)2022 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-36232981

RESUMEN

The oocyte microenvironment constituted by the follicular fluid (FF) is a key for the optimal development of female gametes. Its composition reflects the physiological state of the ovarian follicle. The particularity of FF is to contain a huge diversity of extracellular vesicles specific to women, in the same way as seminal plasma in men. Here, we described and compared morphological aspects of broad subcategories of human FF-related Extracellular Vesicles (EVs). EVs participate in physiological and pathological processes and have potential applications in diagnostics or therapeutics. EVs isolated from FF are involved in different biological functions related to follicular growth, oocyte maturation, and embryo development. However, knowledge on the morphology of FF-derived EVs is limited, mainly due to their sub-micrometer size and to intrinsic limitations in methods applied for their characterization. The aim of this study was to provide a comprehensive morphological description of EVs from FF of healthy subjects and quantification. EVs separation was realized by centrifugation, with comparison of the EV yield obtained from differential centrifugation and one-step ultracentrifugation. Cryo-Transmission Electron Microscopy was used to reveal the morphology, size, and phenotype of EVs. Dynamic Light Scattering (DLS) and Nanoparticle Tracking Analysis (NTA) were used to quantify and analyze the size distribution for each centrifugation step. We performed a comprehensive inventory of human follicular fluid EVs. We show that human FF contains a huge diversity of EVs. This study brings novel insights on EVs from normal FF and provides a reference for further studies of EVs in ovarian diseases.


Asunto(s)
Vesículas Extracelulares , Líquido Folicular , Vesículas Extracelulares/fisiología , Femenino , Humanos , Masculino , Oocitos , Oogénesis , Folículo Ovárico
3.
Bio Protoc ; 10(16): e3714, 2020 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-33659378

RESUMEN

Microtubule dynamic instability is driven by the hydrolysis of the GTP bound to the ß-subunit of the α-ß tubulin heterodimer. Nucleotide analogues are commonly used to mimic the different steps of the tubulin GTPase cycle, but most of them are poor microtubule nucleators. Usually, microtubule assembly is seeded by guanylyl-(α, ß)-methylene-diphosphonate (GMPCPP) or glycerol that can be limiting factors in monitoring the effect of other nucleotide analogs on their polymerization. Here, we describe a protocol that allows the assembly of microtubules in the presence of nucleotide analogues without the need of heterogeneous seeds and at a low final glycerol concentration. Microtubules are first assembled in the presence of the analogue of interest and glycerol to promote assembly. These microtubules are then sonicated to produce seeds that will be used to assemble microtubules in the absence of glycerol. This strategy produces homogeneous nucleotide-bound microtubules that can be further analyzed by biochemical or structural methods such as cryo-electron microscopy.

4.
Sci Rep ; 6: 36162, 2016 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-27824088

RESUMEN

Exosomes are important mediators in intercellular communication. Released by many cell types, they transport proteins, lipids, and nucleic acids to distant recipient cells and contribute to important physiopathological processes. Standard current exosome isolation methods based on differential centrifugation protocols tend to induce aggregation of particles in highly concentrated suspensions and freezing of exosomes can induce damage and inconsistent biological activity. Trehalose is a natural, non-toxic sugar widely used as a protein stabilizer and cryoprotectant by the food and drug industry. Here we report that addition of 25 mM trehalose to pancreatic beta-cell exosome-like vesicle isolation and storage buffer narrows the particle size distribution and increases the number of individual particles per microgram of protein. Repeated freeze-thaw cycles induce an increase in particle concentration and in the width of the size distribution for exosome-like vesicles stored in PBS, but not in PBS 25 mM trehalose. No signs of lysis or incomplete vesicles were observed by cryo-electron tomography in PBS and trehalose samples. In macrophage immune assays, beta-cell extracellular vesicles in trehalose show consistently higher TNF-alpha cytokine secretion stimulation indexes suggesting improved preservation of biological activity. The addition of trehalose might be an attractive means to standardize experiments in the field of exosome research and downstream applications.


Asunto(s)
Criopreservación , Crioprotectores/farmacología , Exosomas/metabolismo , Células Secretoras de Insulina/metabolismo , Trehalosa/farmacología , Línea Celular , Exosomas/ultraestructura , Humanos , Células Secretoras de Insulina/ultraestructura
5.
Nat Cell Biol ; 18(10): 1102-8, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27617931

RESUMEN

EB1 is a microtubule plus-end tracking protein that recognizes GTP-tubulin dimers in microtubules and thus represents a unique probe to investigate the architecture of the GTP cap of growing microtubule ends. Here, we conjugated EB1 to gold nanoparticles (EB1-gold) and imaged by cryo-electron tomography its interaction with dynamic microtubules assembled in vitro from purified tubulin. EB1-gold forms comets at the ends of microtubules assembled in the presence of GTP, and interacts with the outer surface of curved and straight tubulin sheets as well as closed regions of the microtubule lattice. Microtubules assembled in the presence of GTP, different GTP analogues or cell extracts display similarly curved sheets at their growing ends, which gradually straighten as their protofilament number increases until they close into a tube. Together, our data provide unique structural information on the interaction of EB1 with growing microtubule ends. They further offer insights into the conformational changes that tubulin dimers undergo during microtubule assembly and the architecture of the GTP-cap region.


Asunto(s)
Citoesqueleto/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Línea Celular , Guanosina Trifosfato/metabolismo , Humanos , Unión Proteica/fisiología , Conformación Proteica , Tubulina (Proteína)/metabolismo
6.
Methods Mol Biol ; 777: 193-208, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21773930

RESUMEN

Cryo-electron tomography of vitrified specimens allows visualization of thin biological samples in three-dimensions. This method can be applied to study the interaction of proteins that show disorder and/or bind in a nonregular fashion to microtubules. Here, we describe the protocols we use to observe microtubules assembled in vitro in the presence of XMAP215, a large and flexible protein that binds to discrete sites on the microtubule lattice. Gold particles are added to the mix before vitrification to facilitate image acquisition in low-dose mode and their subsequent alignment before tomographic reconstruction. Three-dimensional reconstructions are performed using the IMOD software, processed with ImageJ and visualized in UCSF Chimera. Extraction of features of interest is performed using a patch-based algorithm (CryoSeg) developed in the laboratory. All the software used in this procedure is freely available or can be obtained on request, and run on most operating systems.


Asunto(s)
Microscopía por Crioelectrón/métodos , Tomografía con Microscopio Electrónico/métodos , Microtúbulos/ultraestructura , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/ultraestructura , Microtúbulos/química , Tubulina (Proteína)/química , Tubulina (Proteína)/ultraestructura
7.
J Biol Chem ; 285(13): 9525-9534, 2010 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-20110359

RESUMEN

Hsp90 and tubulin are among the most abundant proteins in the cytosol of eukaryotic cells. Although Hsp90 plays key roles in maintaining its client proteins in their active state, tubulin is essential for fundamental processes such as cell morphogenesis and division. Several studies have suggested a possible connection between Hsp90 and the microtubule cytoskeleton. Because tubulin is a labile protein in its soluble form, we investigated whether Hsp90 protects it against thermal denaturation. Both proteins were purified from porcine brain, and their interaction was characterized in vitro by using spectrophotometry, sedimentation assays, video-enhanced differential interference contrast light microscopy, and native polyacrylamide gel electrophoresis. Our results show that Hsp90 protects tubulin against thermal denaturation and keeps it in a state compatible with microtubule polymerization. We demonstrate that Hsp90 cannot resolve tubulin aggregates but that it likely binds early unfolding intermediates, preventing their aggregation. Protection was maximal at a stoichiometry of two molecules of Hsp90 for one of tubulin. This protection does not require ATP binding and hydrolysis by Hsp90, but it is counteracted by geldanamycin, a specific inhibitor of Hsp90.


Asunto(s)
Proteínas HSP90 de Choque Térmico/metabolismo , Tubulina (Proteína)/química , Adenosina Trifosfato/química , Animales , Benzoquinonas/farmacología , Encéfalo/metabolismo , Citosol/metabolismo , Electroforesis en Gel de Poliacrilamida/métodos , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Calor , Lactamas Macrocíclicas/farmacología , Luz , Microscopía de Interferencia/métodos , Microtúbulos/metabolismo , Desnaturalización Proteica , Espectrofotometría/métodos , Porcinos
8.
Opt Express ; 17(11): 9235-40, 2009 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-19466174

RESUMEN

We performed Second Harmonic Microscopy of axonemes obtained from sea urchin sperm. Using polarization analysis and a trade-off between signal and photodamage, we were able to determine, for the first time to our knowledge, the nonlinear susceptibility chizxx/chixzx = 1.1+/-0.2 and chizzz/chixzx = 4+/-0.5 of axonemes.


Asunto(s)
Axonema/ultraestructura , Microscopía Fluorescente/métodos , Microscopía de Contraste de Fase/métodos , Erizos de Mar/ultraestructura , Animales , Células Cultivadas
9.
Nat Cell Biol ; 10(4): 415-21, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18364701

RESUMEN

End binding 1 (EB1) is a plus-end-tracking protein (+TIP) that localizes to microtubule plus ends where it modulates their dynamics and interactions with intracellular organelles. Although the regulating activity of EB1 on microtubule dynamics has been studied in cells and purified systems, the molecular mechanisms involved in its specific activity are still unclear. Here, we describe how EB1 regulates the dynamics and structure of microtubules assembled from pure tubulin. We found that EB1 stimulates spontaneous nucleation and growth of microtubules, and promotes both catastrophes (transitions from growth to shrinkage) and rescues (reverse events). Electron cryomicroscopy showed that EB1 induces the initial formation of tubulin sheets, which rapidly close into the common 13-protofilament-microtubule architecture. Our results suggest that EB1 favours the lateral association of free tubulin at microtubule-sheet edges, thereby stimulating nucleation, sheet growth and closure. The reduction of sheet length at microtubule growing-ends together with the elimination of stressed microtubule lattices may account for catastrophes. Conversely, occasional binding of EB1 to the microtubule lattice may induce rescues.


Asunto(s)
Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos , Tubulina (Proteína)/metabolismo , Animales , Ratones , Microscopía por Video , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Modelos Biológicos , Conformación Proteica , Porcinos
10.
Curr Biol ; 14(23): 2086-95, 2004 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-15589150

RESUMEN

BACKGROUND: CLIP-170 is a microtubule binding protein specifically located at microtubule plus ends, where it modulates their dynamic properties and their interactions with intracellular organelles. The mechanism by which CLIP-170 is targeted to microtubule ends remains unclear today, as well as its precise effect on microtubule dynamics. RESULTS: We used the N-terminal part of CLIP-170 (named H2), which contains the microtubule binding domains, to investigate how it modulates in vitro microtubule dynamics and structure. We found that H2 primarily promoted rescues (transitions from shrinkage to growth) of microtubules nucleated from pure tubulin and isolated centrosomes, and stimulated microtubule nucleation. Electron cryomicroscopy revealed that H2 induced the formation of tubulin rings in solution and curved oligomers at the extremities of microtubules in assembly conditions. CONCLUSIONS: These results suggest that CLIP-170 targets specifically at microtubule plus ends by copolymerizing with tubulin and modulates microtubule nucleation, polymerization, and rescues by the same basic mechanism with tubulin oligomers as intermediates.


Asunto(s)
Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Microscopía por Crioelectrón , Microscopía por Video , Modelos Biológicos , Proteínas de Neoplasias , Unión Proteica , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...