Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 8(44): 24836-24846, 2018 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-30713680

RESUMEN

In this article, we present the improvement in device performance and stability as well as reduction in hysteresis of inverted mixed-cation-mixed-halide perovskite solar cells (PSCs) using a low temperature, solution processed titanium oxide (TiO x ) interlayer between [6,6]-phenyl-C61 butyric acid methyl ester (PCBM) and an Al electrode. Upon applying a TiO x interlayer, device resistance was reduced compared to that of the control devices, which results in improved rectification of the characteristic current density-voltage (J-V) curve and improved overall performance of the device. PSCs with the TiO x interlayer show an open-circuit voltage (V oc) of around 1.1 V, current density (J sc) of around 21 mA cm-2, fill factor (FF) of around 72% and enhanced power conversion efficiency (PCE) of 16% under AM1.5 solar spectrum. Moreover, devices with the TiO x interlayer show improved stability compared to devices without the TiO x interlayer. This finding reveals the dual role of the TiO x interlayer in improving device performance and stability.

2.
Sci Adv ; 3(8): e1700738, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28798959

RESUMEN

Controlling the size and shape of semiconducting nanocrystals advances nanoelectronics and photonics. Quantum-confined, inexpensive, solution-derived metal halide perovskites offer narrowband, color-pure emitters as integral parts of next-generation displays and optoelectronic devices. We use nanoporous silicon and alumina thin films as templates for the growth of perovskite nanocrystallites directly within device-relevant architectures without the use of colloidal stabilization. We find significantly blue-shifted photoluminescence emission by reducing the pore size; normally infrared-emitting materials become visibly red, and green-emitting materials become cyan and blue. Confining perovskite nanocrystals within porous oxide thin films drastically increases photoluminescence stability because the templates auspiciously serve as encapsulation. We quantify the template-induced size of the perovskite crystals in nanoporous silicon with microfocus high-energy x-ray depth profiling in transmission geometry, verifying the growth of perovskite nanocrystals throughout the entire thickness of the nanoporous films. Low-voltage electroluminescent diodes with narrow, blue-shifted emission fabricated from nanocrystalline perovskites grown in embedded nanoporous alumina thin films substantiate our general concept for next-generation photonic devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...