Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
Cell Stem Cell ; 28(11): 2000-2008.e4, 2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34478642

RESUMEN

Ductal cells have been proposed as a source of adult ß cell neogenesis, but this has remained controversial. By combining lineage tracing, 3D imaging, and single-cell RNA sequencing (scRNA-seq) approaches, we show that ductal cells contribute to the ß cell population over time. Lineage tracing using the Neurogenin3 (Ngn3)-CreERT line identified ductal cells expressing the endocrine master transcription factor Ngn3 that were positive for the δ cell marker somatostatin and occasionally co-expressed insulin. The number of hormone-expressing ductal cells was increased in Akita+/- diabetic mice, and ngn3 heterozygosity accelerated diabetes onset. scRNA-seq of Ngn3 lineage-traced islet cells indicated that duct-derived somatostatin-expressing cells, some of which retained expression of ductal markers, gave rise to ß cells. This study identified Ngn3-expressing ductal cells as a source of adult ß cell neogenesis in homeostasis and diabetes, suggesting that this mechanism, in addition to ß cell proliferation, maintains the adult islet ß cell population.


Asunto(s)
Diabetes Mellitus Experimental , Células Secretoras de Insulina , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular , Ratones , Proteínas del Tejido Nervioso/genética , Páncreas
3.
Gut ; 2021 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-34330784

RESUMEN

OBJECTIVE: The aggressive basal-like molecular subtype of pancreatic ductal adenocarcinoma (PDAC) harbours a ΔNp63 (p40) gene expression signature reminiscent of a basal cell type. Distinct from other epithelia with basal tumours, ΔNp63+ basal cells reportedly do not exist in the normal pancreas. DESIGN: We evaluated ΔNp63 expression in human pancreas, chronic pancreatitis (CP) and PDAC. We further studied in depth the non-cancerous tissue and developed a three-dimensional (3D) imaging protocol (FLIP-IT, Fluorescence Light sheet microscopic Imaging of Paraffin-embedded or Intact Tissue) to study formalin-fixed paraffin-embedded samples at single cell resolution. Pertinent mouse models and HPDE cells were analysed. RESULTS: In normal human pancreas, rare ΔNp63+ cells exist in ducts while their prevalence increases in CP and in a subset of PDAC. In non-cancer tissue, ΔNp63+ cells are atypical KRT19+ duct cells that overall lack SOX9 expression while they do express canonical basal markers and pertain to a niche of cells expressing gastrointestinal stem cell markers. 3D views show that the basal cells anchor on the basal membrane of normal medium to large ducts while in CP they exist in multilayer dome-like structures. In mice, ΔNp63 is not found in adult pancreas nor in selected models of CP or PDAC, but it is induced in organoids from larger Sox9low ducts. In HPDE, ΔNp63 supports a basal cell phenotype at the expense of a classical duct cell differentiation programme. CONCLUSION: In larger human pancreatic ducts, basal cells exist. ΔNp63 suppresses duct cell identity. These cells may play an important role in pancreatic disease, including PDAC ontogeny, but are not present in mouse models.

4.
Cells ; 10(1)2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33477961

RESUMEN

Diabetes mellitus is a pandemic metabolic disorder that results from either the autoimmune destruction or the dysfunction of insulin-producing pancreatic beta cells. A promising cure is beta cell replacement through the transplantation of islets of Langerhans. However, donor shortage hinders the widespread implementation of this therapy. Human pluripotent stem cells, including embryonic stem cells and induced pluripotent stem cells, represent an attractive alternative beta cell source for transplantation. Although major advances over the past two decades have led to the generation of stem cell-derived beta-like cells that share many features with genuine beta cells, producing fully mature beta cells remains challenging. Here, we review the current status of beta cell differentiation protocols and highlight specific challenges that are associated with producing mature beta cells. We address the challenges and opportunities that are offered by monogenic forms of diabetes. Finally, we discuss the remaining hurdles for clinical application of stem cell-derived beta cells and the status of ongoing clinical trials.


Asunto(s)
Diferenciación Celular , Diabetes Mellitus Tipo 1 , Células Madre Embrionarias Humanas , Células Madre Pluripotentes Inducidas , Células Secretoras de Insulina , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patología , Diabetes Mellitus Tipo 1/terapia , Células Madre Embrionarias Humanas/metabolismo , Células Madre Embrionarias Humanas/patología , Células Madre Embrionarias Humanas/trasplante , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Células Madre Pluripotentes Inducidas/trasplante , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Células Secretoras de Insulina/trasplante
6.
Diabetologia ; 62(11): 1961-1968, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31414144

RESUMEN

Reciprocal signalling between the endothelium and the pancreatic epithelium is crucial for coordinated differentiation of the embryonic endocrine and exocrine pancreas. In the adult pancreas, islets depend on their dense capillary network to adequately respond to changes in plasma glucose levels. Vascular changes contribute to the onset and progression of both type 1 and type 2 diabetes. Impaired revascularisation of islets transplanted in individuals with type 1 diabetes is linked to islet graft failure and graft loss. This review summarises our understanding of the role of vascular endothelial growth factor-A (VEGF-A) and endothelial cells in beta cell development, physiology and disease. In addition, the therapeutic potential of modulating VEGF-A levels in beta and beta-like cells for transplantation is discussed.


Asunto(s)
Vasos Sanguíneos/metabolismo , Células Endoteliales/citología , Células Secretoras de Insulina/citología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Glucemia/análisis , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Progresión de la Enfermedad , Homeostasis , Humanos , Células Secretoras de Insulina/trasplante , Islotes Pancreáticos/metabolismo , Ratones , Ratones Endogámicos NOD , Neovascularización Fisiológica , Páncreas/metabolismo , Ratas , Regeneración , Transducción de Señal
7.
Am J Hum Genet ; 104(5): 985-989, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-31006513

RESUMEN

We report a recurrent CNOT1 de novo missense mutation, GenBank: NM_016284.4; c.1603C>T (p.Arg535Cys), resulting in a syndrome of pancreatic agenesis and abnormal forebrain development in three individuals and a similar phenotype in mice. CNOT1 is a transcriptional repressor that has been suggested as being critical for maintaining embryonic stem cells in a pluripotent state. These findings suggest that CNOT1 plays a critical role in pancreatic and neurological development and describe a novel genetic syndrome of pancreatic agenesis and holoprosencephaly.


Asunto(s)
Discapacidades del Desarrollo/etiología , Holoprosencefalia/etiología , Enfermedades del Recién Nacido/etiología , Mutación , Enfermedades del Sistema Nervioso/etiología , Páncreas/anomalías , Enfermedades Pancreáticas/congénito , Factores de Transcripción/genética , Secuencia de Aminoácidos , Animales , Discapacidades del Desarrollo/patología , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/patología , Femenino , Holoprosencefalia/patología , Humanos , Lactante , Recién Nacido , Enfermedades del Recién Nacido/patología , Masculino , Ratones , Ratones Noqueados , Enfermedades del Sistema Nervioso/patología , Páncreas/patología , Enfermedades Pancreáticas/etiología , Enfermedades Pancreáticas/patología , Linaje , Fenotipo , Homología de Secuencia , Síndrome
8.
Physiol Rev ; 98(3): 1143-1167, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29717931

RESUMEN

Diabetes mellitus results from disturbed glucose homeostasis due to an absolute (type 1) or relative (type 2) deficiency of insulin, a peptide hormone almost exclusively produced by the beta cells of the endocrine pancreas in a tightly regulated manner. Current therapy only delays disease progression through insulin injection and/or oral medications that increase insulin secretion or sensitivity, decrease hepatic glucose production, or promote glucosuria. These drugs have turned diabetes into a chronic disease as they do not solve the underlying beta cell defects or entirely prevent the long-term complications of hyperglycemia. Beta cell replacement through islet transplantation is a more physiological therapeutic alternative but is severely hampered by donor shortage and immune rejection. A curative strategy should combine newer approaches to immunomodulation with beta cell replacement. Success of this approach depends on the development of practical methods for generating beta cells, either in vitro or in situ through beta cell replication or beta cell differentiation. This review provides an overview of human beta cell generation.


Asunto(s)
Técnicas de Cultivo de Célula , Células Secretoras de Insulina/fisiología , Regeneración , Animales , Homeostasis , Humanos , Células Secretoras de Insulina/trasplante
9.
Diabetologia ; 61(8): 1804-1810, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29789879

RESUMEN

AIMS/HYPOTHESIS: The initial avascular period following islet transplantation seriously compromises graft function and survival. Enhancing graft revascularisation to improve engraftment has been attempted through virus-based delivery of angiogenic triggers, but risks associated with viral vectors have hampered clinical translation. In vitro transcribed mRNA transfection circumvents these risks and may be used for improving islet engraftment. METHODS: Mouse and human pancreatic islet cells were transfected with mRNA encoding the angiogenic growth factor vascular endothelial growth factor A (VEGF-A) before transplantation under the kidney capsule in mice. RESULTS: At day 7 post transplantation, revascularisation of grafts transfected with Vegf-A (also known as Vegfa) mRNA was significantly higher compared with non-transfected or Gfp mRNA-transfected controls in mouse islet grafts (2.11- and 1.87-fold, respectively) (vessel area/graft area, mean ± SEM: 0.118 ± 0.01 [n = 3] in Vegf-A mRNA transfected group (VEGF) vs 0.056 ± 0.01 [n = 3] in no RNA [p < 0.05] vs 0.063 ± 0.02 [n = 4] in Gfp mRNA transfected group (GFP) [p < 0.05]); EndoC-bH3 grafts (2.85- and 2.48-fold. respectively) (0.085 ± 0.02 [n = 4] in VEGF vs 0.030 ± 0.004 [n = 4] in no RNA [p < 0.05] vs 0.034 ± 0.01 [n = 5] in GFP [p < 0.05]); and human islet grafts (3.17- and 3.80-fold, respectively) (0.048 ± 0.013 [n = 3] in VEGF vs 0.015 ± 0.0051 [n = 4] in no RNA [p < 0.01] vs 0.013 ± 0.0046 [n = 4] in GFP [p < 0.01]). At day 30 post transplantation, human islet grafts maintained a vascularisation benefit (1.70- and 1.82-fold, respectively) (0.049 ± 0.0042 [n = 8] in VEGF vs 0.029 ± 0.0052 [n = 5] in no RNA [p < 0.05] vs 0.027 ± 0.0056 [n = 4] in GFP [p < 0.05]) and a higher beta cell volume (1.64- and 2.26-fold, respectively) (0.0292 ± 0.0032 µl [n = 7] in VEGF vs 0.0178 ± 0.0021 µl [n = 5] in no RNA [p < 0.01] vs 0.0129 ± 0.0012 µl [n = 4] in GFP [p < 0.001]). CONCLUSIONS/INTERPRETATION: Vegf-A mRNA transfection before transplantation provides a promising and safe strategy to improve engraftment of islets and other cell-based implants.


Asunto(s)
Células Secretoras de Insulina/citología , Islotes Pancreáticos/citología , Neovascularización Fisiológica , ARN Mensajero/genética , Transfección , Factor A de Crecimiento Endotelial Vascular/genética , Animales , Supervivencia Celular , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/trasplante , Trasplante de Islotes Pancreáticos , Ratones
10.
Stem Cell Reports ; 10(3): 712-724, 2018 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-29539434

RESUMEN

Generating an unlimited source of human insulin-producing cells is a prerequisite to advance ß cell replacement therapy for diabetes. Here, we describe a 3D culture system that supports the expansion of adult human pancreatic tissue and the generation of a cell subpopulation with progenitor characteristics. These cells display high aldehyde dehydrogenase activity (ALDHhi), express pancreatic progenitors markers (PDX1, PTF1A, CPA1, and MYC), and can form new organoids in contrast to ALDHlo cells. Interestingly, gene expression profiling revealed that ALDHhi cells are closer to human fetal pancreatic tissue compared with adult pancreatic tissue. Endocrine lineage markers were detected upon in vitro differentiation. Engrafted organoids differentiated toward insulin-positive (INS+) cells, and circulating human C-peptide was detected upon glucose challenge 1 month after transplantation. Engrafted ALDHhi cells formed INS+ cells. We conclude that adult human pancreatic tissue has potential for expansion into 3D structures harboring progenitor cells with endocrine differentiation potential.


Asunto(s)
Diferenciación Celular/fisiología , Organoides/fisiología , Células Madre/patología , Adulto , Animales , Proliferación Celular/fisiología , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/fisiología , Ratones , Organoides/metabolismo , Células Madre/metabolismo
11.
PLoS One ; 13(2): e0191249, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29408875

RESUMEN

Pancreas injury by partial duct ligation (PDL) activates beta cell differentiation and proliferation in adult mouse pancreas but remains controversial regarding the anticipated increase in beta cell volume. Several reports unable to show beta cell volume augmentation in PDL pancreas used automated digital image analysis software. We hypothesized that fully automatic beta cell morphometry without manual micrograph artifact remediation introduces bias and therefore might be responsible for reported discrepancies and controversy. However, our present results prove that standard digital image processing with automatic thresholding is sufficiently robust albeit less sensitive and less adequate to demonstrate a significant increase in beta cell volume in PDL versus Sham-operated pancreas. We therefore conclude that other confounding factors such as quality of surgery, selection of samples based on relative abundance of the transcription factor Neurogenin 3 (Ngn3) and tissue processing give rise to inter-laboratory inconsistencies in beta cell volume quantification in PDL pancreas.


Asunto(s)
Automatización , Islotes Pancreáticos/patología , Animales
12.
Diabetes ; 67(1): 58-70, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28986398

RESUMEN

Inhibition of notch signaling is known to induce differentiation of endocrine cells in zebrafish and mouse. After performing an unbiased in vivo screen of ∼2,200 small molecules in zebrafish, we identified an inhibitor of Cdk5 (roscovitine), which potentiated the formation of ß-cells along the intrapancreatic duct during concurrent inhibition of notch signaling. We confirmed and characterized the effect with a more selective Cdk5 inhibitor, (R)-DRF053, which specifically increased the number of duct-derived ß-cells without affecting their proliferation. By duct-specific overexpression of the endogenous Cdk5 inhibitors Cdk5rap1 or Cdkal1 (which previously have been linked to diabetes in genome-wide association studies), as well as deleting cdk5, we validated the role of chemical Cdk5 inhibition in ß-cell differentiation by genetic means. Moreover, the cdk5 mutant zebrafish displayed an increased number of ß-cells independently of inhibition of notch signaling, in both the basal state and during ß-cell regeneration. Importantly, the effect of Cdk5 inhibition to promote ß-cell formation was conserved in mouse embryonic pancreatic explants, adult mice with pancreatic ductal ligation injury, and human induced pluripotent stem (iPS) cells. Thus, we have revealed a previously unknown role of Cdk5 as an endogenous suppressor of ß-cell differentiation and thereby further highlighted its importance in diabetes.


Asunto(s)
Quinasa 5 Dependiente de la Ciclina/metabolismo , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Conductos Pancreáticos/citología , Células Madre/citología , Células Madre/metabolismo , Animales , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Quinasa 5 Dependiente de la Ciclina/genética , Estudio de Asociación del Genoma Completo , Genotipo , Larva/citología , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal/fisiología , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
13.
BMC Med Genet ; 18(1): 57, 2017 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-28525974

RESUMEN

BACKGROUND: Pancreatic agenesis is an extremely rare cause of neonatal diabetes mellitus and has enabled the discovery of several key transcription factors essential for normal pancreas and beta cell development. CASE PRESENTATION: We report a case of a Caucasian female with complete pancreatic agenesis occurring together with semilobar holoprosencephaly (HPE), a more common brain developmental disorder. Clinical findings were later confirmed by autopsy, which also identified agenesis of the gallbladder. Although the sequences of a selected set of genes related to pancreas agenesis or HPE were wild-type, the patient's phenotype suggests a genetic defect that emerges early in embryonic development of brain, gallbladder and pancreas. CONCLUSIONS: Developmental defects of the pancreas and brain can occur together. Identifying the genetic defect may identify a novel key regulator in beta cell development.


Asunto(s)
Anomalías Congénitas/genética , Vesícula Biliar/anomalías , Holoprosencefalia/genética , Páncreas/anomalías , Encéfalo/anomalías , Encéfalo/embriología , Anomalías Congénitas/diagnóstico , Discapacidades del Desarrollo/diagnóstico , Discapacidades del Desarrollo/genética , Femenino , Vesícula Biliar/embriología , Holoprosencefalia/diagnóstico , Humanos , Recién Nacido , Enfermedades del Recién Nacido/diagnóstico , Enfermedades del Recién Nacido/genética , Páncreas/embriología , Análisis de Secuencia de ADN , Población Blanca
14.
Diabetologia ; 60(6): 1051-1056, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28299380

RESUMEN

AIMS/HYPOTHESIS: Endothelial-endocrine cell interactions and vascular endothelial growth factor (VEGF)-A signalling are deemed essential for maternal islet vascularisation, glucose control and beta cell expansion during mouse pregnancy. The aim of this study was to assess whether pregnancy-associated beta cell expansion was affected under conditions of islet hypovascularisation. METHODS: Soluble fms-like tyrosine kinase 1 (sFLT1), a VEGF-A decoy receptor, was conditionally overexpressed in maternal mouse beta cells from 1.5 to 14.5 days post coitum. Islet vascularisation, glycaemic control, beta cell proliferation, individual beta cell size and total beta cell volume were assessed in both pregnant mice and non-pregnant littermates. RESULTS: Conditional overexpression of sFLT1 in beta cells resulted in islet hypovascularisation and glucose intolerance in both pregnant and non-pregnant mice. In contrast to non-pregnant littermates, glucose intolerance in pregnant mice was transient. sFLT1 overexpression did not affect pregnancy-associated changes in beta cell proliferation, individual beta cell size or total beta cell volume. CONCLUSIONS/INTERPRETATION: Reduced intra-islet VEGF-A signalling results in maternal islet hypovascularisation and impaired glycaemic control but does not preclude beta cell expansion during mouse pregnancy.


Asunto(s)
Células Secretoras de Insulina/metabolismo , Animales , Proliferación Celular/genética , Proliferación Celular/fisiología , Tamaño de la Célula , Femenino , Islotes Pancreáticos/metabolismo , Ratones , Embarazo , Ratas , Transducción de Señal/genética , Transducción de Señal/fisiología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 1 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo
15.
Diabetologia ; 60(1): 134-142, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27704164

RESUMEN

AIMS/HYPOTHESIS: Hypoxia in the initial days after islet transplantation leads to considerable loss of islet mass and contributes to disappointing outcomes in the clinical setting. The aim of the present study was to investigate whether co-transplantation of human non-endothelial bone marrow-derived multipotent adult progenitor cells (MAPCs), which are non-immunogenic and can secrete angiogenic growth factors during the initial days after implantation, could improve islet engraftment and survival. METHODS: Islets (150) were co-transplanted, with or without human MAPCs (2.5 × 105) as separate or composite pellets, under the kidney capsule of syngeneic alloxan-induced diabetic C57BL/6 mice. Blood glucose levels were frequently monitored and IPGTTs were carried out. Grafts and serum were harvested at 2 and 5 weeks after transplantation to assess outcome. RESULTS: Human MAPCs produced high amounts of angiogenic growth factors, including vascular endothelial growth factor, in vitro and in vivo, as demonstrated by the induction of neo-angiogenesis in the chorioallantoic membrane assay. Islet-human MAPC co-transplantation as a composite pellet significantly improved the outcome of islet transplantation as measured by the initial glycaemic control, diabetes reversal rate, glucose tolerance and serum C-peptide concentration compared with the outcome following transplantation of islets alone. Histologically, a higher blood vessel area and density in addition to a higher vessel/islet ratio were detected in recipients of islet-human MAPC composites. CONCLUSIONS/INTERPRETATION: The present data suggest that co-transplantation of mouse pancreatic islets with human MAPCs, which secrete high amounts of angiogenic growth factors, enhance islet graft revascularisation and subsequently improve islet graft function.


Asunto(s)
Diabetes Mellitus Tipo 1/terapia , Trasplante de Células Madre/métodos , Células Madre/citología , Adulto , Animales , Glucemia/fisiología , Células Cultivadas , Diabetes Mellitus Experimental/fisiopatología , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Tipo 1/fisiopatología , Modelos Animales de Enfermedad , Femenino , Humanos , Islotes Pancreáticos/metabolismo , Masculino , Ratones Endogámicos C57BL , Persona de Mediana Edad , Neovascularización Fisiológica/fisiología , Células Madre/fisiología
16.
Cell ; 168(1-2): 73-85.e11, 2017 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-27916274

RESUMEN

The recent discovery that genetically modified α cells can regenerate and convert into ß-like cells in vivo holds great promise for diabetes research. However, to eventually translate these findings to human, it is crucial to discover compounds with similar activities. Herein, we report the identification of GABA as an inducer of α-to-ß-like cell conversion in vivo. This conversion induces α cell replacement mechanisms through the mobilization of duct-lining precursor cells that adopt an α cell identity prior to being converted into ß-like cells, solely upon sustained GABA exposure. Importantly, these neo-generated ß-like cells are functional and can repeatedly reverse chemically induced diabetes in vivo. Similarly, the treatment of transplanted human islets with GABA results in a loss of α cells and a concomitant increase in ß-like cell counts, suggestive of α-to-ß-like cell conversion processes also in humans. This newly discovered GABA-induced α cell-mediated ß-like cell neogenesis could therefore represent an unprecedented hope toward improved therapies for diabetes.


Asunto(s)
Diabetes Mellitus/tratamiento farmacológico , Células Secretoras de Glucagón/citología , Células Secretoras de Insulina/citología , Ácido gamma-Aminobutírico/administración & dosificación , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Diferenciación Celular/efectos de los fármacos , Diabetes Mellitus/inducido químicamente , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patología , Células Secretoras de Glucagón/efectos de los fármacos , Humanos , Islotes Pancreáticos/citología , Masculino , Ratones , Proteínas del Tejido Nervioso , Ratas , Ratas Wistar , Ácido gamma-Aminobutírico/farmacología
17.
PLoS One ; 11(5): e0156204, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27243814

RESUMEN

Transcription factor mediated lineage reprogramming of human pancreatic exocrine tissue could conceivably provide an unlimited supply of islets for transplantation in the treatment of diabetes. Exocrine tissue can be efficiently reprogrammed to islet-like cells using a cocktail of transcription factors: Pdx1, Ngn3, MafA and Pax4 in combination with growth factors. We show here that overexpression of exogenous Pax4 in combination with suppression of the endogenous transcription factor ARX considerably enhances the production of functional insulin-secreting ß-like cells with concomitant suppression of α-cells. The efficiency was further increased by culture on laminin-coated plates in media containing low glucose concentrations. Immunocytochemistry revealed that reprogrammed cultures were composed of ~45% islet-like clusters comprising >80% monohormonal insulin+ cells. The resultant ß-like cells expressed insulin protein levels at ~15-30% of that in adult human islets, efficiently processed proinsulin and packaged insulin into secretory granules, exhibited glucose responsive insulin secretion, and had an immediate and prolonged effect in normalising blood glucose levels upon transplantation into diabetic mice. We estimate that approximately 3 billion of these cells would have an immediate therapeutic effect following engraftment in type 1 diabetes patients and that one pancreas would provide sufficient tissue for numerous transplants.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Técnicas de Reprogramación Celular/métodos , Diabetes Mellitus Experimental/terapia , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Células Secretoras de Insulina/trasplante , Factores de Transcripción Paired Box/metabolismo , Páncreas Exocrino/citología , Factores de Transcripción/genética , Adulto , Animales , Células Cultivadas , Femenino , Glucosa/metabolismo , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Masculino , Ratones , Ratones SCID , Páncreas Exocrino/metabolismo , Proinsulina/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/genética , Estreptozocina , Adulto Joven
18.
Diabetologia ; 59(9): 1948-58, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27318836

RESUMEN

AIMS/HYPOTHESIS: When the beta cell mass or function declines beyond a critical point, hyperglycaemia arises. Little is known about the potential pathways involved in beta cell rescue. As two cytokines, epidermal growth factor (EGF) and ciliary neurotrophic factor (CNTF), restored a functional beta cell mass in mice with long-term hyperglycaemia by reprogramming acinar cells that transiently expressed neurogenin 3 (NGN3), the current study assesses the effect of these cytokines on the functional beta cell mass after an acute chemical toxic insult. METHODS: Glycaemia and insulin levels, pro-endocrine gene expression and beta cell origin, as well as the role of signal transducer and activator of transcription 3 (STAT3) signalling, were assessed in EGF+CNTF-treated mice following acute hyperglycaemia. RESULTS: The mice were hyperglycaemic 1 day following i.v. injection of the beta cell toxin alloxan, when the two cytokines were applied. One week later, 68.6 ± 4.6% of the mice had responded to the cytokine treatment and increased their insulin(+) cell number to 30% that of normoglycaemic control mice, resulting in restoration of euglycaemia. Although insulin(-) NGN3(+) cells appeared following acute EGF+CNTF treatment, genetic lineage tracing showed that the majority of the insulin(+) cells originated from pre-existing beta cells. Beta cell rescue by EGF+CNTF depends on glycaemia rather than on STAT3-induced NGN3 expression in acinar cells. CONCLUSIONS/INTERPRETATION: In adult mice, EGF+CNTF allows the rescue of beta cells in distress when treatment is given shortly after the diabetogenic insult. The rescued beta cells restore a functional beta cell mass able to control normal blood glucose levels. These findings may provide new insights into compensatory pathways activated early after beta cell loss.


Asunto(s)
Factor Neurotrófico Ciliar/uso terapéutico , Factor de Crecimiento Epidérmico/uso terapéutico , Hiperglucemia/tratamiento farmacológico , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Aloxano/toxicidad , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Glucemia/efectos de los fármacos , Insulina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Transducción de Señal/efectos de los fármacos
19.
Diabetologia ; 59(7): 1474-1479, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27130279

RESUMEN

AIMS/HYPOTHESIS: Pw1 or paternally-expressed gene 3 (Peg3) encodes a zinc finger transcription factor that is widely expressed during mouse embryonic development and later restricted to multiple somatic stem cell lineages in the adult. The aim of the present study was to define Pw1 expression in the embryonic and adult pancreas and investigate its role in the beta cell cycle in Pw1 wild-type and mutant mice. METHODS: We analysed PW1 expression by immunohistochemistry in pancreas of nonpregant and pregnant mice and following injury by partial duct ligation. Its role in the beta cell cycle was studied in vivo using a novel conditional knockout mouse and in vitro by lentivirus-mediated gene knockdown. RESULTS: We showed that PW1 is expressed in early pancreatic progenitors at E9.5 but becomes progressively restricted to fully differentiated beta cells as they become established after birth and withdraw from the cell cycle. Notably, PW1 expression declines when beta cells are induced to proliferate and loss of PW1 function activates the beta cell cycle. CONCLUSIONS/INTERPRETATION: These results indicate that PW1 is a co-regulator of the beta cell cycle and can thus be considered a novel therapeutic target in diabetes.


Asunto(s)
Células Secretoras de Insulina/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Páncreas/metabolismo , Animales , Ciclo Celular/genética , Ciclo Celular/fisiología , Proliferación Celular/genética , Proliferación Celular/fisiología , Inmunohistoquímica , Células Secretoras de Insulina/citología , Factores de Transcripción de Tipo Kruppel/genética , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Páncreas/embriología
20.
Diabetologia ; 59(9): 1834-7, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27053238

RESUMEN

The generation of beta(-like) cells to compensate for their absolute or relative shortage in type 1 and type 2 diabetes is an obvious therapeutic strategy. Patients first received grafts of donor islet cells over 25 years ago, but this procedure has not become routine in clinical practice because of a donor cell shortage and (auto)immune problems. Transplantation of differentiated embryonic and induced pluripotent stem cells may overcome some but not all the current limitations. Reprogramming exocrine cells towards functional beta(-like) cells would offer an alternative abundant and autologous source of beta(-like) cells. This review focuses on work by our research group towards achieving such a source of cells. It summarises a presentation given at the 'Can we make a better beta cell?' symposium at the 2015 annual meeting of the EASD. It is accompanied by two other reviews on topics from this symposium (by Amin Ardestani and Kathrin Maedler, DOI: 10.1007/s00125-016-3892-9 , and by Heiko Lickert and colleagues, DOI: 10.1007/s00125-016-3949-9 ) and a commentary by the Session Chair, Shanta Persaud (DOI: 10.1007/s00125-016-3870-2 ).


Asunto(s)
Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Páncreas/citología , Animales , Diferenciación Celular/fisiología , Humanos , Macrófagos/metabolismo , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA