Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomedicines ; 12(4)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38672080

RESUMEN

OBJECTIVES: Regarding the 2021 World Health Organization (WHO) classification of central nervous system (CNS) tumors, the isocitrate dehydrogenase (IDH) mutation status is one of the most important factors for CNS tumor classification. The aim of our study is to analyze which of the commonly used magnetic resonance imaging (MRI) sequences is best suited to obtain this information non-invasively using radiomics-based machine learning models. We developed machine learning models based on different MRI sequences and determined which of the MRI sequences analyzed yields the highest discriminatory power in predicting the IDH mutation status. MATERIAL AND METHODS: In our retrospective IRB-approved study, we used the MRI images of 106 patients with histologically confirmed gliomas. The MRI images were acquired using the T1 sequence with and without administration of a contrast agent, the T2 sequence, and the Fluid-Attenuated Inversion Recovery (FLAIR) sequence. To objectively compare performance in predicting the IDH mutation status as a function of the MRI sequence used, we included only patients in our study cohort for whom MRI images of all four sequences were available. Seventy-one of the patients had an IDH mutation, and the remaining 35 patients did not have an IDH mutation (IDH wild-type). For each of the four MRI sequences used, 107 radiomic features were extracted from the corresponding MRI images by hand-delineated regions of interest. Data partitioning into training data and independent test data was repeated 100 times to avoid random effects associated with the data partitioning. Feature preselection and subsequent model development were performed using Random Forest, Lasso regression, LDA, and Naïve Bayes. The performance of all models was determined with independent test data. RESULTS: Among the different approaches we examined, the T1-weighted contrast-enhanced sequence was found to be the most suitable for predicting IDH mutations status using radiomics-based machine learning models. Using contrast-enhanced T1-weighted MRI images, our seven-feature model developed with Lasso regression achieved a mean area under the curve (AUC) of 0.846, a mean accuracy of 0.792, a mean sensitivity of 0.847, and a mean specificity of 0.681. The administration of contrast agents resulted in a significant increase in the achieved discriminatory power. CONCLUSIONS: Our analyses show that for the prediction of the IDH mutation status using radiomics-based machine learning models, among the MRI images acquired with the commonly used MRI sequences, the contrast-enhanced T1-weighted images are the most suitable.

2.
Cancers (Basel) ; 15(17)2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37686690

RESUMEN

PURPOSE: In meningiomas, TERT promotor mutations are rare but qualify the diagnosis of anaplasia, directly impacting adjuvant therapy. Effective screening for patients at risk for promotor mutations could enable more targeted molecular analyses and improve diagnosis and treatment. METHODS: Semiautomatic segmentation of intracranial grade 2/3 meningiomas was performed on preoperative magnetic resonance imaging. Discriminatory power to predict TERT promoter mutations was analyzed using a random forest algorithm with an increasing number of radiomic features. Two final models with five and eight features with both fixed and differing radiomics features were developed and adjusted to eliminate random effects and to avoid overfitting. RESULTS: A total of 117 image sets including training (N = 94) and test data (N = 23) were analyzed. To eliminate random effects and demonstrate the robustness of our approach, data partitioning and subsequent model development and testing were repeated a total of 100 times (each time with repartitioned training and independent test data). The established five- and eight-feature models with both fixed and different radiomics features enabled the prediction of TERT with similar but excellent performance. The five-feature (different/fixed) model predicted TERT promotor mutation status with a mean AUC of 91.8%/94.3%, mean accuracy of 85.5%/88.9%, mean sensitivity of 88.6%/91.4%, mean specificity of 83.2%/87.0%, and a mean Cohen's Kappa of 71.0%/77.7%. The eight-feature (different/fixed) model predicted TERT promotor mutation status with a mean AUC of 92.7%/94.6%, mean accuracy of 87.3%/88.9%, mean sensitivity of 89.6%/90.6%, mean specificity of 85.5%/87.5%, and a mean Cohen's Kappa of 74.4%/77.6%. Of note, the addition of further features of up to N = 8 only slightly increased the performance. CONCLUSIONS: Radiomics-based machine learning enables prediction of TERT promotor mutation status in meningiomas with excellent discriminatory performance. Future analyses in larger cohorts should include grade 1 lesions as well as additional molecular alterations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...