Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioconjug Chem ; 27(10): 2407-2417, 2016 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-27564088

RESUMEN

In designing new tracers consisting of a small peptide conjugated to a reporter of comparable size, particular attention needs to be paid to the selection of the reporter group, which can dictate both the in vitro and the in vivo performances of the whole conjugate. In the case of fluorescent tracers, this is particularly true given the large numbers of available dye moieties differing in their structures and properties. Here, we have investigated the in vitro and in vivo properties of a novel series of MMP-12 selective probes composed of cyanine dyes varying in their structure, net charge, and hydrophilic character, tethered through a linker to a potent and specific MMP-12 phosphinic pseudopeptide inhibitor. The impact of linker length has been also explored. The crystallographic structure of one tracer in complex with MMP-12 has been obtained, providing the first crystal structure of a Cy5.5-derived probe and confirming that the binding of the targeting moiety is unaffected. MMP-12 remains the tracers' privileged target, as attested by their affinity selectivity profile evaluated in solution toward a panel of 12 metalloproteases. In vivo assessment of four selected probes has highlighted not only the impact of the dye structure but also that of the linker length on the probes' blood clearance rates and their biodistributions. These experiments have also provided valuable data on the stability of the dye moieties in vivo. This has permitted the identification of one probe, which combines favorable binding to MMP-12 in solution and on cells with optimized in vivo performance including blood clearance rate suitable for short-time imaging. Through this series of tracers, we have identified various critical factors modulating the tracers' in vivo behavior, which is both useful for the development and optimization of MMP-12 selective radiolabeled tracers and informative for the design of fluorescent probes in general.


Asunto(s)
Metaloproteinasa 12 de la Matriz/análisis , Imagen Molecular/métodos , Sondas Moleculares/química , Sondas Moleculares/metabolismo , Animales , Carbocianinas , Técnicas de Química Sintética , Cristalografía por Rayos X , Células HeLa , Humanos , Metaloproteinasa 12 de la Matriz/química , Metaloproteinasa 12 de la Matriz/metabolismo , Ratones Endogámicos C57BL , Sondas Moleculares/farmacocinética , Óptica y Fotónica/métodos , Péptidos/química , Distribución Tisular
2.
ACS Nano ; 7(10): 8645-57, 2013 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-24070236

RESUMEN

Near-infrared (NIR) imaging of the lymphatic system offers a sensitive, versatile, and accurate lymph node mapping to locate the first, potentially metastatic, draining nodes in the operating room. Many luminescent nanoprobes have received great attention in this field, and the design of nontoxic and bright nanosystems is of crucial importance. Fluorescent NIR-emitting dye doped silica nanoparticles represent valuable platforms to fulfill these scopes, providing sufficient brightness, resistance to photobleaching, and hydrophilic nontoxic materials. Here, we synthesized these highly stable core-shell nanoparticles with a programmable surface charge positioning and determined the effect of these physicochemical properties on their in vivo behavior. In addition, we characterized their fluorescence kinetic profile in the right axillary lymph node (RALN) mapping. We found that nanoparticles with negative charges hidden by a PEG shell are more appropriate than those with external negative charges in the mapping of lymph nodes. We also demonstrated the efficient excretion of these nanostructures by the hepatobiliary route and their nontoxicity in mice up to 3 months postinjection. These results indicate the potential future development of these fluorescent nanosystems for LN mapping.


Asunto(s)
Colorantes Fluorescentes/química , Nanopartículas , Biopsia del Ganglio Linfático Centinela/métodos , Dióxido de Silicio/química , Animales , Femenino , Ratones , Ratones Endogámicos BALB C , Microscopía Electrónica de Transmisión , Propiedades de Superficie , Distribución Tisular
3.
Adv Drug Deliv Rev ; 65(5): 719-31, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-22981756

RESUMEN

Near infrared fluorescence offers several advantages for tissue and in vivo imaging thanks to deeper photon penetration. In this article, we review a promising class of near infrared emitting probes based on semiconductor quantum dots (QDs), which have the potential to considerably improve in vivo fluorescence imaging thanks to their high brightness and stability. We discuss in particular the different criteria to optimize the design of near infrared QDs. We present the recent developments in the synthesis of novel QD materials and their different in vivo imaging applications, including lymph node localization, vasculature imaging, tumor localization, as well as cell tracking and QD-based multimodal probes.


Asunto(s)
Diagnóstico por Imagen/métodos , Diseño de Fármacos , Puntos Cuánticos , Espectroscopía Infrarroja Corta/métodos , Animales , Humanos , Distribución Tisular/fisiología
4.
PLoS One ; 7(8): e44433, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22952979

RESUMEN

Due to its non-invasiveness, high temporal resolution and lower cost, fluorescence imaging is an interesting alternative to the current method (blue dye and radiocolloid) of sentinel lymph node (SLN) mapping in breast cancer. Near-infrared (NIR) emitting cadmium-based Quantum Dots (QDs) could be used for this purpose; however, their wide application is limited because of the toxicity of heavy metals composing the core. Our recent work demonstrated that indium-based QDs exhibit a weak acute local toxicity in vivo compared to their cadmium-based counterparts. In the present study we confirmed the weak toxicity of CuInS(2)/ZnS QDs in different in vitro models. Further in vivo studies in healthy mice showed that In-based QDs could be visualised in SLN in a few minutes after administration with a progressive increase in fluorescence until 8 h. The quantity of indium was assessed in selected organs and tissues by inductively coupled plasma - mass spectroscopy (ICP-MS) as a function of post-injection time. QD levels decrease rapidly at the injection point in the first hours after administration with a parallel increase in the lymph nodes and to a lesser extent in the liver and spleen. In addition, we observed that 3.5% of the injected indium dose was excreted in faeces in the first 4 days, with only trace quantities in the urine. Metastatic spread to the lymph nodes may hamper its visualisation. Therefore, we further performed non-invasive fluorescence measurement of QDs in SLN in tumour-bearing mice. Metastatic status was assessed by immunohistology and molecular techniques and revealed the utmost metastatic invasion of 36% of SLN. Fluorescence signal was the same irrespective of SLN status. Thus, near-infrared emitting cadmium-free QDs could be an excellent SLN tracer.


Asunto(s)
Indio , Ganglios Linfáticos/patología , Neoplasias Mamarias Animales/diagnóstico , Puntos Cuánticos , Espectroscopía Infrarroja Corta , Animales , Muerte Celular , Línea Celular Tumoral , Modelos Animales de Enfermedad , Eritrocitos/citología , Femenino , Fibroblastos/citología , Fluorescencia , Hemólisis , Humanos , Neoplasias Mamarias Animales/patología , Ratones , Ratones Endogámicos BALB C , Metástasis de la Neoplasia , Factores de Tiempo , Distribución Tisular , Pruebas de Toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...