Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 12(23)2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36500797

RESUMEN

In this work, stable and spherical silver nanoparticles (AgNPs) were synthesized in situ from silver salt (silver nitrate) using the aqueous extract of the okra plant (Abelmoschus esculentus) at room temperature and ambient pH conditions. The influences of different parts of the plant (such as the leaves, stems, and pods) on the chemical-reducing effectiveness of silver nitrate to silver nanoparticles were investigated. The aqueous extract of the leaves was found to be more effective in the chemical reduction of silver nanoparticles and in stabilizing them at the same time. The silver nanoparticles produced were stable and did not precipitate even after storage for 1 month. The extract of the stem was less effective in the reduction capacity followed by the extract of the pods. The results indicate that the different amounts of phytochemicals present in the leaves, stems, and pods of the okra plant are responsible for the chemical reduction and stabilizing effect. The silver nanoparticles were characterized by UV-Vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy (EDX). The surface plasmon resonance (SPR) peak at 460 nm confirmed the formation of silver nanoparticles. The nanoparticles were spherical with an average size of 16 nm and polycrystalline with face-centered cubic (fcc) structures. The z-scan technique was used to study the nonlinear refraction and absorption coefficients of AgNPs at wavelengths of 488 and 514 nm under C.W. mode excitation. The nonlinear refraction index and nonlinear absorption coefficients were calculated in the theoretical equations in the experimental data. The antibacterial properties of the nanoparticles were evaluated against Gram-positive and Gram-negative bacteria.

2.
Nanomaterials (Basel) ; 12(20)2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36296739

RESUMEN

The wildfire-like spread of COVID-19, caused by severe acute respiratory syndrome-associated coronavirus-2, has resulted in a pandemic that has put unprecedented stress on the world's healthcare systems and caused varying severities of socio-economic damage. As there are no specific treatments to combat the virus, current approaches to overcome the crisis have mainly revolved around vaccination efforts, preventing human-to-human transmission through enforcement of lockdowns and repurposing of drugs. To efficiently facilitate the measures implemented by governments, rapid and accurate diagnosis of the disease is vital. Reverse-transcription polymerase chain reaction and computed tomography have been the standard procedures to diagnose and evaluate COVID-19. However, disadvantages, including the necessity of specialized equipment and trained personnel, the high financial cost of operation and the emergence of false negatives, have hindered their application in high-demand and resource-limited sites. Nanoparticle-based methods of diagnosis have been previously reported to provide precise results within short periods of time. Such methods have been studied in previous outbreaks of coronaviruses, including severe acute respiratory syndrome-associated coronavirus and middle east respiratory syndrome coronavirus. Given the need for rapid diagnostic techniques, this review discusses nanoparticle use in detecting the aforementioned coronaviruses and the recent severe acute respiratory syndrome-associated coronavirus-2 to highlight approaches that could potentially be used during the COVID-19 pandemic.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 183: 439-450, 2017 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-28494396

RESUMEN

Curcumin is a yellow phenolic compound with a wide range of reported biological effects. However, two main obstacles hinder the use of curcumin therapeutically, namely its poor bioavailability and photostability. We have synthesized two curcumin complexes, the first a boron curcumin complex (B-Cur2) and the second an iron (Fe-Cur3) complex of curcumin. Both derivatives showed high fluorescence efficiency (quantum yield) and greater photostability in solution. The improved photostability could be attributed to the coordination structures and the removal of ß-diketone group from curcumin. The fluorescence and ultra violet/visible absorption spectra of curcumin, B-Cur2 and Fe-Cur3 all have a similar spectral pattern when dissolved in the same organic solvent. However, a shift towards a lower wavelength was observed when moving from polar to non-polar solvents, possibly due to differences in solvent polarity. A plot of Stokes' shift vs the orientation polarity parameter (Δf) or vs the solvent polarity parameter (ET 30) showed an improved correlation between the solvent polarity parameter than with the orientation polarity parameter and indicating that the red shift observed could be due to hydrogen-bonding between the solvent molecules. A similar association was obtained when Stokes' shift was replaced by maximum synchronous fluorescence. Both B-Cur2 and Fe-Cur3 had larger quantum yields than curcumin, suggesting they may be good candidates for medical imaging and in vitro studies.


Asunto(s)
Boro/química , Curcumina/análisis , Curcumina/química , Hierro/química , Espectrometría de Fluorescencia/métodos , Estabilidad de Medicamentos , Fotólisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA