Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Appl Radiat Isot ; 61(6): 1463-8, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15388148

RESUMEN

We compared the value of using a digital signal processing unit for gamma-ray spectroscopy with that of an analog one for in situ measurements of gamma-rays generated by inelastic neutron scattering reactions with soil elements. A large cylindrical NaI(Tl) scintillation detector, 15.24 cm high by 15.24 cm diameter was used to measure carbon (C) and oxygen (O). The performance of the systems was assessed as a function of input count rate (ICR) by monitoring the peak areas of the C, 4.43 MeV, and O, 6.13 MeV, gamma-rays. In separate experiments, the digital and the analog systems were also compared using an intense 10.3 mCi 137Cs source to vary the ICR, and the 1.17 MeV peak area of 60Co was used as the reference.


Asunto(s)
Conversión Analogo-Digital , Carbono/análisis , Análisis de Activación de Neutrones/instrumentación , Procesamiento de Señales Asistido por Computador/instrumentación , Suelo/análisis , Espectrometría gamma/instrumentación , Análisis de Falla de Equipo
2.
Nature ; 411(6836): 469-72, 2001 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-11373677

RESUMEN

Northern mid-latitude forests are a large terrestrial carbon sink. Ignoring nutrient limitations, large increases in carbon sequestration from carbon dioxide (CO2) fertilization are expected in these forests. Yet, forests are usually relegated to sites of moderate to poor fertility, where tree growth is often limited by nutrient supply, in particular nitrogen. Here we present evidence that estimates of increases in carbon sequestration of forests, which is expected to partially compensate for increasing CO2 in the atmosphere, are unduly optimistic. In two forest experiments on maturing pines exposed to elevated atmospheric CO2, the CO2-induced biomass carbon increment without added nutrients was undetectable at a nutritionally poor site, and the stimulation at a nutritionally moderate site was transient, stabilizing at a marginal gain after three years. However, a large synergistic gain from higher CO2 and nutrients was detected with nutrients added. This gain was even larger at the poor site (threefold higher than the expected additive effect) than at the moderate site (twofold higher). Thus, fertility can restrain the response of wood carbon sequestration to increased atmospheric CO2. Assessment of future carbon sequestration should consider the limitations imposed by soil fertility, as well as interactions with nitrogen deposition.


Asunto(s)
Atmósfera , Dióxido de Carbono/metabolismo , Carbono/metabolismo , Ecosistema , Árboles/metabolismo , Biomasa , Cycadopsida , Nitrógeno/metabolismo , Árboles/crecimiento & desarrollo , Agua
3.
Nature ; 410(6830): 809-12, 2001 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-11298447

RESUMEN

Human actions are causing declines in plant biodiversity, increases in atmospheric CO2 concentrations and increases in nitrogen deposition; however, the interactive effects of these factors on ecosystem processes are unknown. Reduced biodiversity has raised numerous concerns, including the possibility that ecosystem functioning may be affected negatively, which might be particularly important in the face of other global changes. Here we present results of a grassland field experiment in Minnesota, USA, that tests the hypothesis that plant diversity and composition influence the enhancement of biomass and carbon acquisition in ecosystems subjected to elevated atmospheric CO2 concentrations and nitrogen deposition. The study experimentally controlled plant diversity (1, 4, 9 or 16 species), soil nitrogen (unamended versus deposition of 4 g of nitrogen per m2 per yr) and atmospheric CO2 concentrations using free-air CO2 enrichment (ambient, 368 micromol mol-1, versus elevated, 560 micromol mol-1). We found that the enhanced biomass accumulation in response to elevated levels of CO2 or nitrogen, or their combination, is less in species-poor than in species-rich assemblages.


Asunto(s)
Dióxido de Carbono/metabolismo , Ecosistema , Nitrógeno/metabolismo , Plantas/metabolismo , Atmósfera , Biomasa , Minnesota , Suelo
4.
Environ Pollut ; 115(3): 359-71, 2001.
Artículo en Inglés | MEDLINE | ID: mdl-11789918

RESUMEN

The Intergovernmental Panel of Climate Change (IPCC) has concluded that the greenhouse gases carbon dioxide (CO2) and tropospheric ozone (O3) are increasing concomitantly globally. Little is known about the effect of these interacting gases on growth, survival, and productivity of forest ecosystems. In this study we assess the effects of three successive years of exposure to combinations of elevated CO2 and O3 on growth responses in a five trembling aspen (Populus tremuloides) clonal mixture in a regenerating stand. The experiment is located in Rhinelander, Wisconsin, USA (45 degrees N 89 degrees W) and employs free air carbon dioxide and ozone enrichment (FACE) technology. The aspen stand was exposed to a factorial combination of four treatments consisting of elevated CO2 (560 ppm), elevated O3 (episodic exposure-90 microl l(-1) hour(-1)), a combination of elevated CO2 and O3, and ambient control in 30 m treatment rings with three replications. Our overall results showed that our three growth parameters including height, diameter and volume were increased by elevated CO2, decreased by elevated O3, and were not significantly different from the ambient control under elevated CO2 + O3. However, there were significant clonal differences in the responses; all five clones exhibited increased growth with elevated CO2, one clone showed an increase with elevated O3, and two clones showed an increase over the control with elevated CO2 + O3, two clones showed a decrease, and one was not significantly different from the control. Notably. there was a significant increase in current terminal shoot dieback with elevated CO2 during the 1999-2000 dormant season. Dieback was especially prominent in two of the five clones, and was attributed to those clones growing longer into the autumnal season where they were subject to frost. Our results show that elevated O3 negates expected positive growth effects of elevated CO2 in Populus tremuloides in the field, and suggest that future climate model predictions should take into account the offsetting effects of elevated O3 on CO2 enrichment when estimating future growth of trembling aspen stands.


Asunto(s)
Dióxido de Carbono/farmacología , Ozono/farmacología , Brotes de la Planta/efectos de los fármacos , Salicaceae/efectos de los fármacos , Contaminantes Atmosféricos/farmacología , Contaminación del Aire/estadística & datos numéricos , Atmósfera , Cámaras de Exposición Atmosférica , Clonación de Organismos , Interacciones Farmacológicas , Ecosistema , Agricultura Forestal , Efecto Invernadero , Brotes de la Planta/crecimiento & desarrollo , Salicaceae/crecimiento & desarrollo , Estaciones del Año , Árboles/efectos de los fármacos , Árboles/crecimiento & desarrollo , Estados Unidos
5.
Environ Pollut ; 115(3): 395-404, 2001.
Artículo en Inglés | MEDLINE | ID: mdl-11789920

RESUMEN

Atmospheric chemical composition affects foliar chemical composition, which in turn influences the dynamics of both herbivory and decomposition in ecosystems. We assessed the independent and interactive effects of CO2 and O3 fumigation on foliar chemistry of quaking aspen (Populus tremuloides) and paper birch (Betula papyrifera) at a Free-Air CO2 Enrichment (FACE) facility in northern Wisconsin. Leaf samples were collected at five time periods during a single growing season, and analyzed for nitrogen. starch and condensed tannin concentrations, nitrogen resorption efficiencies (NREs), and C:N ratios. Enriched CO2 reduced foliar nitrogen concentrations in aspen and birch; O3 only marginally reduced nitrogen concentrations. NREs were unaffected by pollution treatment in aspen, declined with 03 exposure in birch, and this decline was ameliorated by enriched CO2. C:N ratios of abscised leaves increased in response to enriched CO2 in both tree species. O3 did not significantly alter C:N ratios in aspen, although values tended to be higher in + CO2 + O3 leaves. For birch, O3 decreased C:N ratios under ambient CO2 and increased C:N ratios under elevated CO2. Thus, under the combined pollutants, the C:N ratios of both aspen and birch leaves were elevated above the averaged responses to the individual and independent trace gas treatments. Starch concentrations were largely unresponsive to CO2 and O3 treatments in aspen. but increased in response to elevated CO2 in birch. Levels of condensed tannins were negligibly affected by CO2 and O3 treatments in aspen, but increased in response to enriched CO2 in birch. Results from this work suggest that changes in foliar chemical composition elicited by enriched CO2 are likely to impact herbivory and decomposition, whereas the effects of O3 are likely to be minor, except in cases where they influence plant response to CO2.


Asunto(s)
Betula/efectos de los fármacos , Dióxido de Carbono/farmacología , Ozono/farmacología , Hojas de la Planta/efectos de los fármacos , Salicaceae/efectos de los fármacos , Betula/química , Betula/fisiología , Carbono/metabolismo , Ecosistema , Agricultura Forestal , Nitrógeno/metabolismo , Hojas de la Planta/química , Hojas de la Planta/fisiología , Salicaceae/química , Salicaceae/fisiología , Almidón/metabolismo , Taninos/metabolismo , Árboles/química , Árboles/efectos de los fármacos , Árboles/fisiología , Estados Unidos
6.
Environ Pollut ; 115(3): 473-81, 2001.
Artículo en Inglés | MEDLINE | ID: mdl-11789927

RESUMEN

To determine whether elevated CO2 reduces or exacerbates the detrimental effects of O3 on aspen (Populus tremuloides Michx.). aspen clones 216 and 271 (O3 tolerant), and 259 (O3 sensitive) were exposed to ambient levels of CO2 and O3 or elevated levels of CO2, O3, or CO2 + O3 in the FACTS II (Aspen FACE) experiment, and physiological and molecular responses were measured and compared. Clone 259. the most O3-sensitive clone, showed the greatest amount of visible foliar symptoms as well as significant decreases in chlorophyll, carotenoid, starch, and ribulose-1, 5-bisphosphate carboxylase/oxygenase (Rubisco) concentrations and transcription levels for the Rubisco small subunit. Generally, the constitutive (basic) transcript levels for phenylalanine ammonialyase (PAL) and chalcone synthase (CHS) and the average antioxidant activities were lower for the ozone sensitive clone 259 as compared to the more tolerant 216 and 271 clones. A significant decrease in chlorophyll a, b and total (a + b) concentrations in CO2, O3, and CO2 + O3 plants was observed for all clones. Carotenoid concentrations were also significantly lower in all clones; however. CHS transcript levels were not significantly affected, suggesting a possible degradation of carotenoid pigments in O3-stressed plants. Antioxidant activities and PAL and 1-aminocyclopropane-l-carboxylic acid (ACC)-oxidase transcript levels showed a general increase in all O3 treated clones, while remaining low in CO2 and CO2 + O3 plants (although not all differences were significant). Our results suggest that the ascorbate-glutathione and phenylpropanoid pathways were activated under ozone stress and suppressed during exposure to elevated CO2. Although CO2 + O2 treatment resulted in a slight reduction of O3-induced leaf injury, it did not appear to ameliorate all of the harmful affects of O3 and, in fact. may have contributed to an increase in chloroplast damage in all three aspen clones.


Asunto(s)
Contaminantes Atmosféricos/farmacología , Dióxido de Carbono/farmacología , Ozono/farmacología , Hojas de la Planta/efectos de los fármacos , Salicaceae/efectos de los fármacos , Antioxidantes/metabolismo , Ácido Ascórbico/metabolismo , Cámaras de Exposición Atmosférica , Carotenoides/metabolismo , Clorofila/metabolismo , Clonación de Organismos , Interacciones Farmacológicas , Perfilación de la Expresión Génica , Glutatión/metabolismo , Fenilpropionatos/metabolismo , Fotosíntesis/genética , Fotosíntesis/fisiología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo , Salicaceae/genética , Salicaceae/metabolismo , Sensibilidad y Especificidad
7.
Oecologia ; 128(2): 237-250, 2001 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28547473

RESUMEN

Rising atmospheric CO2 may stimulate future forest productivity, possibly increasing carbon storage in terrestrial ecosystems, but how tropospheric ozone will modify this response is unknown. Because of the importance of fine roots to the belowground C cycle, we monitored fine-root biomass and associated C fluxes in regenerating stands of trembling aspen, and mixed stands of trembling aspen and paper birch at FACTS-II, the Aspen FACE project in Rhinelander, Wisconsin. Free-air CO2 enrichment (FACE) was used to elevate concentrations of CO2 (average enrichment concentration 535 µl l-1) and O3 (53 nl l-1) in developing forest stands in 1998 and 1999. Soil respiration, soil pCO2, and dissolved organic carbon in soil solution (DOC) were monitored biweekly. Soil respiration was measured with a portable infrared gas analyzer. Soil pCO2 and DOC samples were collected from soil gas wells and tension lysimeters, respectively, at depths of 15, 30, and 125 cm. Fine-root biomass averaged 263 g m-2 in control plots and increased 96% under elevated CO2. The increased root biomass was accompanied by a 39% increase in soil respiration and a 27% increase in soil pCO2. Both soil respiration and pCO2 exhibited a strong seasonal signal, which was positively correlated with soil temperature. DOC concentrations in soil solution averaged ~12 mg l-1 in surface horizons, declined with depth, and were little affected by the treatments. A simplified belowground C budget for the site indicated that native soil organic matter still dominated the system, and that soil respiration was by far the largest flux. Ozone decreased the above responses to elevated CO2, but effects were rarely statistically significant. We conclude that regenerating stands of northern hardwoods have the potential for substantially greater C input to soil due to greater fine-root production under elevated CO2. Greater fine-root biomass will be accompanied by greater soil C efflux as soil respiration, but leaching losses of C will probably be unaffected.

8.
Oecologia ; 113(1): 37-45, 1997 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28307292

RESUMEN

To test inter- and intraspecific variability in the responsiveness to elevated CO2, 9-14 different genotypes of each of 12 perennial species from fertile permanent grassland were grown in Lolium perenne swards under ambient (35 Pa) and elevated (60 Pa) atmospheric partial pressure of CO2 (pCO2) for 3 years in a free air carbon dioxide enrichment (FACE) experiment. The plant species were grouped according to their functional types: grasses (L. perenne, L. multiflorum, Arrhenatherum elatius, Dactylis glomerata, Festuca pratensis, Holcus lanatus, Trisetum flavescens), non-legume dicots (Rumex obtusifolius, R. acetosa, Ranunculus friesianus), and legumes (Trifolium repens, T. pratense). Yield (above a cutting height of 4.5 cm) was measured three times per year. The results were as follow. (1) There were highly significant differences in the responsiveness to elevated pCO2 between the three functional types; legumes showed the strongest and grasses the weakest yield increase at elevated pCO2. (2) There were differences in the temporal development of responsiveness to elevated pCO2 among the functional types. The responsiveness of the legumes declined from the first to the second year, while the responsiveness of the non-legume dicots increased over the 3 years. During the growing season, the grasses and the non-legume dicots showed the strongest response to elevated pCO2 during reproductive growth in the spring. (3) There were no significant genotypic differences in responsiveness to elevated pCO2. Our results suggest that, due to interspecific differences in the responsiveness to elevated pCO2, the species proportion within fertile temperate grassland may change if the increase in pCO2 continues. Due to the temporal differences in the responsiveness to elevated pCO2 among species, complex effects of elevated pCO2 on competitive interactions in mixed swards must be expected. The existence of genotypic variability in the responsiveness to elevated pCO2, on which selection could act, was not found under our experimental conditions.

9.
Oecologia ; 112(1): 17-25, 1997 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28307370

RESUMEN

The extent of the response of plant growth to atmospheric CO2 enrichment depends on the availability of resources other than CO2. An important growth-limiting resource under field conditions is nitrogen (N). N may, therefore, influence the CO2 response of plants. The effect of elevated CO2 (60 Pa) partial pressure (pCO2) on the N nutrition of field-grown Lolium perenne swards, cultivated alone or in association with Trifolium repens, was investigated using free air carbon dioxide enrichment (FACE) technology over 3 years. The established grassland ecosystems were treated with two N fertilization levels and were defoliated at two frequencies. Under elevated pCO2, the above-ground plant material of the L. perenne monoculture showed a consistent and significant decline in N concentration which, in general, led to a lower total annual N yield. Despite the decline in the critical N concentration (minimum N concentration required for non-N-limited biomass production) under elevated pCO2, the index of N nutrition (ratio of actual N concentration and critical N concentration) was lower under elevated pCO2 than under ambient pCO2 in frequently defoliated L. perenne monocultures. Thus, we suggest that reduced N yield under elevated pCO2 was evoked indirectly by a reduction of plant-available N. For L. perenne grown in association with T. repens and exposed to elevated pCO2, there was an increase in the contribution of symbiotically fixed N to the total N yield of the grass. This can be explained by an increased apparent transfer of N from the associated N2-fixing legume species to the non-fixing grass. The total annual N yield of the mixed grass/legume swards increased under elevated pCO2. All the additional N yielded was due to symbiotically fixed N. Through the presence of an N2-fixing plant species more symbiotically fixed N was introduced into the system and consequently helped to overcome N limitation under elevated pCO2.

10.
Plant Physiol ; 112(2): 575-583, 1996 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12226411

RESUMEN

Symbiotic N2 fixation is one of the main processes that introduces N into terrestrial ecosystems. As such, it may be crucial for the sequestration of the extra C available in a world of continuously increasing atmospheric CO2 partial pressure (pCO2). The effect of elevated pCO2 (60 Pa) on symbiotic N2 fixation (15N-isotope dilution method) was investigated using Free-Air-CO2-Enrichment technology over a period of 3 years. Trifolium repens was cultivated either alone or together with Lolium perenne (a nonfixing reference crop) in mixed swards. Two different N fertilization levels and defoliation frequencies were applied. The total N yield increased consistently and the percentage of plant N derived from symbiotic N2 fixation increased significantly in T. repens under elevated pCO2. All additionally assimilated N was derived from symbiotic N2 fixation, not from the soil. In the mixtures exposed to elevated pCO2, an increased amount of symbiotically fixed N (+7.8, 8.2, and 6.2 g m-2 a-1 in 1993, 1994, and 1995, respectively) was introduced into the system. Increased N2 fixation is a competitive advantage for T. repens in mixed swards with pasture grasses and may be a crucial factor in maintaining the C:N ratio in the ecosystem as a whole.

11.
Science ; 222(4619): 8, 1983 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-17810066
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...