Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Molecules ; 27(13)2022 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-35807272

RESUMEN

In this study, a row of four analogous dopamine acryl- and methacrylamide derivatives, namely N-(3,4-dihydroxyphenyethyl) acrylamide, N-(3,4-dihydroxyphenyethyl) meth acrylamide, N-phenethyl methacrylamide, N-(4-hydroxyphenethyl) methacrylamide were synthesized and characterized by 1H-NMR and 13C-NMR, followed by further solvent-based radical polymerization with N-hydroxyethyl acrylamide. All copolymers were characterized by 1H-NMR, dynamic differential calorimetry, and gel permeation chromatography. The dependency of the used comonomer ratios to the molecular mass of the corresponding copolymers has been described. The synthesis of the various polymers serves as a feasibility study and provides important data for a future biometric application in the medical field. We synthesized N-(3,4-dihydroxyphenyethyl) acrylamide copolymer up to 80 mol% by free radical polymerization without using any protecting groups. All polymers show identical perfect adhesive properties by a simple scratch test. Further, the monomers were used as a photo reactive glue formulation to test its adherence to a medical titanium surface sample by tensile shear test.


Asunto(s)
Adhesivos , Metacrilatos , Acrilamida , Acrilamidas/química , Resinas Acrílicas , Adhesivos/química , Catecoles , Metacrilatos/química , Polímeros/química
2.
Chemistry ; 24(14): 3623-3633, 2018 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-29334413

RESUMEN

Native chemical ligation (NCL) is an invaluable tool in the total chemical synthesis of proteins. Ligation auxiliaries overcome the requirement for cysteine. However, the reported auxiliaries remained limited to glycine-containing ligation sites and the acidic conditions applied for cleavage of the typically applied N-benzyl-type linkages promote side reactions. With the aim to improve upon both ligation and cleavage, we systematically investigated alternative ligation scaffolds that challenge the N-benzyl dogma. The study revealed that auxiliary-mediated peptide couplings are fastest when the ligation proceeds via 5-membered rather than 6-membered rings. Substituents in α-position of the amine shall be avoided. We observed, perhaps surprisingly, that additional ß-substituents accelerated the ligation conferred by the ß-mercaptoethyl scaffold. We also describe a potentially general means to remove ligation auxiliaries by treatment with an aqueous solution of triscarboxyethylphosphine (TCEP) and morpholine at pH 8.5. NMR analysis of a 13 C-labeled auxiliary showed that cleavage most likely proceeds through a radical-triggered oxidative fragmentation. High ligation rates provided by ß-substituted 2-mercaptoethyl scaffolds, their facile introduction as well as the mildness of the cleavage reaction are attractive features for protein synthesis beyond cysteine and glycine ligation sites.


Asunto(s)
Glicina/química , Aminas/química , Cisteamina/química , Cisteína/química , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular , Péptidos/química , Proteínas/síntesis química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA