Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Neurol Sci ; 464: 123159, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39094434

RESUMEN

Activation of the NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome is a moderating factor between obesity and cognitive impairment in animals, but this has never been tested in humans following mild traumatic brain injury (mTBI). This is a retrospective cohort analysis of subjects enrolled at a single level 1 trauma center (n = 172). Participants completed Trail Making Test Part A and B (TMT-A and B) at six- and twelve-months, Blood samples were obtained within 24 h of mTBI and apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), caspase-1, interleukin-18 (IL-18), and IL-1ß were assayed. Obese participants (BMI = 30-34.9) were associated with higher IL-18 (p = 0.03) and IL-1ß (p = 0.05) and severely obese participants (BMI > 35.0) were associated with higher IL-1ß (p = 0.005) than healthy weight participants. IL-1ß was associated with TMT-A at six- (p = 0.01) and twelve-months (p = 0.03) and TMT-B at twelve-months (p = 0.046). The interaction of severely obese BMI and IL-1ß was associated with TMT-B at six- (p = 0.049) and twelve-months (p = 0.02). ASC (p = 0.03) and the interaction of ASC with severely obese BMI was associated with TMTB at six- (p = 0.02) and twelve-months (p = 0.02). Obesity may augment acute inflammasome response to mTBI and influence worse long-term cognitive outcomes up to one-year post-injury.


Asunto(s)
Biomarcadores , Índice de Masa Corporal , Inflamasomas , Obesidad , Humanos , Masculino , Femenino , Obesidad/sangre , Obesidad/complicaciones , Obesidad/psicología , Inflamasomas/sangre , Adulto , Biomarcadores/sangre , Persona de Mediana Edad , Estudios Retrospectivos , Lesiones Traumáticas del Encéfalo/sangre , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/psicología , Escala de Coma de Glasgow , Interleucina-18/sangre , Interleucina-1beta/sangre , Adulto Joven , Estudios de Cohortes , Pruebas Neuropsicológicas , Conmoción Encefálica/sangre , Conmoción Encefálica/complicaciones , Conmoción Encefálica/psicología
2.
Neurotrauma Rep ; 5(1): 671-679, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39071984

RESUMEN

A sizable proportion of patients with mild traumatic brain injury (mTBI) have persistent symptoms and functional impairments months to years following injury. This phenomenon is continually observed despite an explosion of research and interest in improving mTBI clinical outcomes over the last two decades. All pharmacological clinical trials to date have failed to demonstrate improved outcomes for mTBI. One possible explanation for these continued failures is an overly myopic approach to treating mTBI (i.e., testing the effect of a single drug with a specific mechanism on a group of people with highly heterogenous injuries). Clinical presentation and prognosis of mTBI vary considerably between patients, and yet we continue to assess group-level effects of a homogenized treatment. We need to utilize an equally complex treatment approach to match the extraordinary complexity of the human brain. Dynamical systems theory has been used to describe systems composed of multiple subsystems who function somewhat independently but are ultimately interconnected. This theory was popularized in the motor control literature as an overarching framework for how the mind and body connect to interact and move through the environment. However, the human body can be viewed as a dynamical system composed of multiple subsystems (i.e., organ systems) who have isolated functions, which are also codependent on the health and performance of other interconnected organ systems. In this perspective piece, we will use the example of mTBI in the obese patient to demonstrate how broadening our approach to treatment of the individual (and not necessarily the injury) may ultimately yield improved outcomes. Furthermore, we will explore clinical and pre-clinical evidence demonstrating multiple system interactions in the context of obesity and TBI and discuss how expanding our understanding of the mechanistic interplay between multiple organ systems may ultimately provide a more personalized treatment approach for this mTBI patient subpopulation.

3.
J Neurotrauma ; 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39078326

RESUMEN

Traumatic brain injury (TBI) causes complex, time-dependent molecular and cellular responses, which include adaptive changes that promote repair and recovery, as well as maladaptive processes such as chronic inflammation that contribute to chronic neurodegeneration and neurological dysfunction. Hormesis is a well-established biological phenomenon in which exposure to low-dose toxins or stressors results in protective responses to subsequent higher-level stressors or insults. Hormetic stimuli show a characteristic U-shaped or inverted J-shaped dose-response curve, as well as being time and exposure-frequency dependent, similar to pre-conditioning and post-conditioning actions. Voluntary exercise interventions, before or after injury, appear to follow these general hormetic principles. But the molecular alterations associated with exercise interventions or more general hormetic responses have received only limited attention. In this study, we used a well-characterized mouse TBI model to assess the effects of different post-conditioning exercise-intervention paradigms on diverse molecular pathways, including neuroinflammation regulators, and post-traumatic neurological deficits. We generated high-throughput gene expression data and associated molecular pathway analyses to assess the potential molecular mechanisms associated with time- and duration-dependent voluntary exercise intervention, as well as time after treatment. Importantly, we also used newer analytical methods to more broadly assess the impact of exercise on diverse molecular pathways. TBI caused long-term changes in multiple neuroinflammation markers and chronic cognitive dysfunction. Notably, all delayed, post-conditioning exercise interventions reduced post-traumatic neuroinflammation and/or attenuated the related cognitive changes, albeit with different pathway specificity and effects magnitude. Exercise comprehensively reversed injury-associated effects in the hippocampus across both activated inflammatory and inhibited neuronal pathways, consistent with a return toward the noninjured, homeostatic state. In contrast, the cortex showed a less consistent pattern with more limited attenuation of inflammatory pathway activation and an amplification in the injury-dependent inhibition of select noninflammatory pathways, indicating less effective and potentially detrimental responses to exercise. Exercise intervention beginning 2 weeks after injury and lasting 2 weeks was less effective than exercise continuing for 4 weeks. Exercise initiated at a more delayed timepoint of 6 weeks after injury and continuing for 4 weeks was more effective than that during the acute phase. The delayed paradigm was also more effective than exercise initiated at 10 weeks after injury and continuing for 8 weeks, consistent with hormetic responses in other models and species. Overall, our study delineates regional and interventional parameters, as well as related molecular pathway changes, associated with post-conditioning exercise treatment, which may help inform future translational interventional strategies.

4.
J Neuroinflammation ; 21(1): 113, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38685031

RESUMEN

Obesity increases the morbidity and mortality of traumatic brain injury (TBI). Detailed analyses of transcriptomic changes in the brain and adipose tissue were performed to elucidate the interactive effects between high-fat diet-induced obesity (DIO) and TBI. Adult male mice were fed a high-fat diet (HFD) for 12 weeks prior to experimental TBI and continuing after injury. High-throughput transcriptomic analysis using Nanostring panels of the total visceral adipose tissue (VAT) and cellular components in the brain, followed by unsupervised clustering, principal component analysis, and IPA pathway analysis were used to determine shifts in gene expression patterns and molecular pathway activity. Cellular populations in the cortex and hippocampus, as well as in VAT, during the chronic phase after combined TBI-HFD showed amplification of central and peripheral microglia/macrophage responses, including superadditive changes in selected gene expression signatures and pathways. Furthermore, combined TBI and HFD caused additive dysfunction in Y-Maze, Novel Object Recognition (NOR), and Morris water maze (MWM) cognitive function tests. These novel data suggest that HFD-induced obesity and TBI can independently prime and support the development of altered states in brain microglia and VAT, including the disease-associated microglia/macrophage (DAM) phenotype observed in neurodegenerative disorders. The interaction between HFD and TBI promotes a shift toward chronic reactive microglia/macrophage transcriptomic signatures and associated pro-inflammatory disease-altered states that may, in part, underlie the exacerbation of cognitive deficits. Thus, targeting of HFD-induced reactive cellular phenotypes, including in peripheral adipose tissue immune cell populations, may serve to reduce microglial maladaptive states after TBI, attenuating post-traumatic neurodegeneration and neurological dysfunction.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Encéfalo , Disfunción Cognitiva , Dieta Alta en Grasa , Macrófagos , Ratones Endogámicos C57BL , Microglía , Animales , Dieta Alta en Grasa/efectos adversos , Microglía/metabolismo , Microglía/patología , Masculino , Ratones , Disfunción Cognitiva/etiología , Disfunción Cognitiva/patología , Disfunción Cognitiva/metabolismo , Macrófagos/metabolismo , Macrófagos/patología , Lesiones Traumáticas del Encéfalo/patología , Lesiones Traumáticas del Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/metabolismo , Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Reconocimiento en Psicología/fisiología , Obesidad/patología , Obesidad/complicaciones , Aprendizaje por Laberinto/fisiología
5.
J Neuroinflammation ; 21(1): 83, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38581043

RESUMEN

BACKGROUND: It is well established that traumatic brain injury (TBI) causes acute and chronic alterations in systemic immune function and that systemic immune changes contribute to posttraumatic neuroinflammation and neurodegeneration. However, how TBI affects bone marrow (BM) hematopoietic stem/progenitor cells chronically and to what extent such changes may negatively impact innate immunity and neurological function has not been examined. METHODS: To further understand the role of BM cell derivatives on TBI outcome, we generated BM chimeric mice by transplanting BM from chronically injured or sham (i.e., 90 days post-surgery) congenic donor mice into otherwise healthy, age-matched, irradiated CD45.2 C57BL/6 (WT) hosts. Immune changes were evaluated by flow cytometry, multiplex ELISA, and NanoString technology. Moderate-to-severe TBI was induced by controlled cortical impact injury and neurological function was measured using a battery of behavioral tests. RESULTS: TBI induced chronic alterations in the transcriptome of BM lineage-c-Kit+Sca1+ (LSK+) cells in C57BL/6 mice, including modified epigenetic and senescence pathways. After 8 weeks of reconstitution, peripheral myeloid cells from TBI→WT mice showed significantly higher oxidative stress levels and reduced phagocytic activity. At eight months after reconstitution, TBI→WT chimeric mice were leukopenic, with continued alterations in phagocytosis and oxidative stress responses, as well as persistent neurological deficits. Gene expression analysis revealed BM-driven changes in neuroinflammation and neuropathology after 8 weeks and 8 months of reconstitution, respectively. Chimeric mice subjected to TBI at 8 weeks and 8 months post-reconstitution showed that longer reconstitution periods (i.e., time post-injury) were associated with increased microgliosis and leukocyte infiltration. Pre-treatment with a senolytic agent, ABT-263, significantly improved behavioral performance of aged C57BL/6 mice at baseline, although it did not attenuate neuroinflammation in the acutely injured brain. CONCLUSIONS: TBI causes chronic activation and progressive dysfunction of the BM stem/progenitor cell pool, which drives long-term deficits in hematopoiesis, innate immunity, and neurological function, as well as altered sensitivity to subsequent brain injury.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Lesiones Encefálicas , Ratones , Animales , Enfermedades Neuroinflamatorias , Ratones Endogámicos C57BL , Lesiones Traumáticas del Encéfalo/patología , Lesiones Encefálicas/patología , Encéfalo/metabolismo
6.
Res Sq ; 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37790560

RESUMEN

Traumatic brain injury (TBI) causes acute and chronic alterations in systemic immune function which contribute to posttraumatic neuroinflammation and neurodegeneration. However, how TBI affects bone marrow (BM) hematopoietic stem/progenitor cells chronically and to what extent such changes may negatively impact innate immunity and neurological function has not been examined. To further understand the role of BM cell derivatives on TBI outcome, we generated BM chimeric mice by transplanting BM from chronically injured or sham congenic donor mice into otherwise healthy, age-matched, irradiated hosts. After 8 weeks of reconstitution, peripheral myeloid cells from TBI→WT mice showed significantly higher oxidative stress levels and reduced phagocytic activity. At eight months after reconstitution, TBI→WT chimeric mice were leukopenic, with continued alterations in phagocytosis and oxidative stress responses, as well as persistent neurological deficits. Gene expression analysis revealed BM-driven changes in neuroinflammation and neuropathology after 8 weeks and 8 months of reconstitution, respectively. Chimeric mice subjected to TBI showed that longer reconstitution periods were associated with increased microgliosis and leukocyte infiltration. Thus, TBI causes chronic activation and progressive dysfunction of the BM stem/progenitor cell pool, which drives long-term deficits in innate immunity and neurological function, as well as altered sensitivity to subsequent brain injury.

7.
Cells ; 12(17)2023 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-37681904

RESUMEN

The transformation of astrocytes into reactive states constitutes a biological response of the central nervous system under a variety of pathological insults. Astrocytes display diverse homeostatic identities that are developmentally predetermined and regionally specified. Upon transformation into reactive states associated with neurodegenerative diseases and other neurological disorders, astrocytes acquire diverse reactive phenotypes. However, it is not clear whether their reactive phenotypes are dictated by region-specific homeostatic identity or by the nature of an insult. To address this question, region-specific gene expression profiling was performed for four brain regions (cortex, hippocampus, thalamus, and hypothalamus) in mice using a custom NanoString panel consisting of selected sets of genes associated with astrocyte functions and their reactivity for five conditions: prion disease, traumatic brain injury, brain ischemia, 5XFAD Alzheimer's disease model and normal aging. Upon transformation into reactive states, genes that are predominantly associated with astrocytes were found to respond to insults in a region-specific manner. Regardless of the nature of the insult or the insult-specificity of astrocyte response, strong correlations between undirected GSA (gene set analysis) scores reporting on astrocyte reactivity and on their homeostatic functions were observed within each individual brain region. The insult-specific gene expression signatures did not separate well from each other and instead partially overlapped, forming continuums. The current study demonstrates that region-specific homeostatic identities of astrocytes are important for defining their response to pathological insults. Within region-specific populations, reactive astrocytes show continuums of gene expression signatures, partially overlapping between individual insults.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Isquemia Encefálica , Animales , Ratones , Astrocitos , Sistema Nervioso Central , Envejecimiento
8.
bioRxiv ; 2023 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-37546932

RESUMEN

Obesity increases the morbidity and mortality of traumatic brain injury (TBI). We performed a detailed analysis of transcriptomic changes in the brain and adipose tissue to examine the interactive effects between high-fat diet-induced obesity (DIO) and TBI in relation to central and peripheral inflammatory pathways, as well as neurological function. Adult male mice were fed a high-fat diet (HFD) for 12 weeks prior to experimental TBI and continuing after injury. Combined TBI and HFD resulted in additive dysfunction in the Y-Maze, novel object recognition (NOR), and Morris water maze (MWM) cognitive function tests. We also performed high-throughput transcriptomic analysis using Nanostring panels of cellular compartments in the brain and total visceral adipose tissue (VAT), followed by unsupervised clustering, principal component analysis, and IPA pathway analysis to determine shifts in gene expression programs and molecular pathway activity. Analysis of cellular populations in the cortex and hippocampus as well as in visceral adipose tissue during the chronic phase after combined TBI-HFD showed amplification of central and peripheral microglia/macrophage responses, including superadditive changes in select gene expression signatures and pathways. These data suggest that HFD-induced obesity and TBI can independently prime and support the development of altered states in brain microglia and visceral adipose tissue macrophages, including the disease-associated microglia/macrophage (DAM) phenotype observed in neurodegenerative disorders. The interaction between HFD and TBI promotes a shift toward chronic reactive microglia/macrophage transcriptomic signatures and associated pro-inflammatory disease-altered states that may, in part, underlie the exacerbation of cognitive deficits. Targeting of HFD-induced reactive cellular phenotypes, including in peripheral adipose tissue macrophages, may serve to reduce microglial maladaptive states after TBI, attenuating post-traumatic neurodegeneration and neurological dysfunction.

9.
Sci Adv ; 9(10): eadd1101, 2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-36888713

RESUMEN

Lipofuscin is an autofluorescent (AF) pigment formed by lipids and misfolded proteins, which accumulates in postmitotic cells with advanced age. Here, we immunophenotyped microglia in the brain of old C57BL/6 mice (>18 months old) and demonstrate that in comparison to young mice, one-third of old microglia are AF, characterized by profound changes in lipid and iron content, phagocytic activity, and oxidative stress. Pharmacological depletion of microglia in old mice eliminated the AF microglia following repopulation and reversed microglial dysfunction. Age-related neurological deficits and neurodegeneration after traumatic brain injury (TBI) were attenuated in old mice lacking AF microglia. Furthermore, increased phagocytic activity, lysosomal burden, and lipid accumulation in microglia persisted for up to 1 year after TBI, were modified by APOE4 genotype, and chronically driven by phagocyte-mediated oxidative stress. Thus, AF may reflect a pathological state in aging microglia associated with increased phagocytosis of neurons and myelin and inflammatory neurodegeneration that can be further accelerated by TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Lesiones Encefálicas , Animales , Ratones , Microglía/metabolismo , Ratones Endogámicos C57BL , Lesiones Encefálicas/complicaciones , Lesiones Encefálicas/metabolismo , Lesiones Encefálicas/patología , Lesiones Traumáticas del Encéfalo/complicaciones , Encéfalo/metabolismo , Fenotipo , Lípidos
10.
Trends Neurosci ; 44(5): 406-418, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33495023

RESUMEN

Traumatic brain injury (TBI) is a debilitating disorder associated with chronic progressive neurodegeneration and long-term neurological decline. Importantly, there is now substantial and increasing evidence that TBI can negatively impact systemic organs, including the pulmonary, gastrointestinal (GI), cardiovascular, renal, and immune system. Less well appreciated, until recently, is that such functional changes can affect both the response to subsequent insults or diseases, as well as contribute to chronic neurodegenerative processes and long-term neurological outcomes. In this review, we summarize evidence showing bidirectional interactions between the brain and systemic organs following TBI and critically assess potential underlying mechanisms.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Disfunción Cognitiva , Animales , Encéfalo , Humanos , Ratones , Ratones Endogámicos C57BL
11.
J Neurochem ; 156(2): 225-248, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-31926033

RESUMEN

We have previously shown that treatment with a mGluR5 positive allosteric modulator (PAM) is neuroprotective after experimental traumatic brain injury (TBI), limiting post-traumatic neuroinflammation by reducing pro-inflammatory microglial activation and promoting anti-inflammatory and neuroprotective responses. However, the specific molecular mechanisms governing this anti-inflammatory shift in microglia remain unknown. Here we show that the mGluR5 PAM, VU0360172 (VuPAM), regulates microglial inflammatory responses through activation of Akt, resulting in the inhibition of GSK-3ß. GSK-3ß regulates the phosphorylation of CREB, thereby controlling the expression of inflammation-related genes and microglial plasticity. The anti-inflammatory action of VuPAM in microglia is reversed by inhibiting Akt/GSK-3ß/CREB signaling. Using a well-characterized TBI model and CX3CR1gfp/+ mice to visualize microglia in vivo, we demonstrate that VuPAM enhances Akt/GSK-3ß/CREB signaling in the injured cortex, as well as anti-inflammatory microglial markers. Furthermore, in situ analysis revealed that GFP + microglia in the cortex of VuPAM-treated TBI mice co-express pCREB and the anti-inflammatory microglial phenotype marker YM1. Taken together, our data show that VuPAM decreases pro-inflammatory microglial activation by modulating Akt/GSK-3ß/CREB signaling. These findings serve to clarify the potential neuroprotective mechanisms of mGluR5 PAM treatment after TBI, and suggest novel therapeutic targets for post-traumatic neuroinflammation. Cover Image for this issue: https://doi.org/10.1111/jnc.15048.


Asunto(s)
Lesiones Traumáticas del Encéfalo/metabolismo , Microglía/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Niacinamida/análogos & derivados , Receptor del Glutamato Metabotropico 5/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Animales , Antiinflamatorios/farmacología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Masculino , Ratones , Microglía/metabolismo , Niacinamida/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Sprague-Dawley , Receptor del Glutamato Metabotropico 5/metabolismo , Transducción de Señal/fisiología
13.
Brain Behav Immun ; 92: 165-183, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33307173

RESUMEN

Extracellular vesicles (EVs) have been implicated mechanistically in the pathobiology of neurodegenerative disorders, including central nervous system injury. However, the role of EVs in spinal cord injury (SCI) has received limited attention to date. Moreover, technical limitations related to EV isolation and characterization methods can lead to misleading or contradictory findings. Here, we examined changes in plasma EVs after mouse SCI at multiple timepoints (1d, 3d, 7d, 14d) using complementary measurement techniques. Plasma EVs isolated by ultracentrifugation (UC) were decreased at 1d post-injury, as shown by nanoparticle tracking analysis (NTA), and paralleled an overall reduction in total plasma extracellular nanoparticles. Western blot (WB) analysis of UC-derived plasma EVs revealed increased expression of the tetraspanin exosome marker, CD81, between 1d and 7d post-injury. To substantiate these findings, we performed interferometric and fluorescence imaging of single, tetraspanin EVs captured directly from plasma with ExoView®. Consistent with WB, we observed significantly increased plasma CD81+ EV count and cargo at 1d post-injury. The majority of these tetraspanin EVs were smaller than 50 nm based on interferometry and were insufficiently resolved by flow cytometry-based detection. At the injury site, there was enhanced expression of EV biogenesis proteins that were also detected in EVs directly isolated from spinal cord tissue by WB. Surface expression of tetraspanins CD9 and CD63 increased in multiple cell types at the injury site; however, astrocyte CD81 expression uniquely decreased, as demonstrated by flow cytometry. UC-isolated plasma EV microRNA cargo was also significantly altered at 1d post-injury with changes similar to that reported in EVs released by astrocytes after inflammatory stimulation. When injected into the lateral ventricle, plasma EVs from SCI mice increased both pro- and anti-inflammatory gene as well as reactive astrocyte gene expression in the brain cortex. These studies provide the first detailed characterization of plasma EV dynamics after SCI and suggest that plasma EVs may be involved in posttraumatic brain inflammation.


Asunto(s)
Exosomas , Vesículas Extracelulares , MicroARNs , Nanopartículas , Traumatismos de la Médula Espinal , Animales , Ratones
14.
Cell Death Dis ; 11(7): 587, 2020 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-32719328

RESUMEN

DNA damage triggers cell death mechanisms contributing to neuronal loss and cognitive decline in neurological disorders, including traumatic brain injury (TBI), and as a side effect of chemotherapy. Mithramycin, which competitively targets chromatin-binding sites of specificity protein 1 (Sp1), was used to examine previously unexplored neuronal cell death regulatory mechanisms via rat primary neurons in vitro and after TBI in mice (males). In primary neurons exposed to DNA-damage-inducing chemotherapy drugs in vitro we showed that DNA breaks sequentially initiate DNA-damage responses, including phosphorylation of ATM, H2AX and tumor protein 53 (p53), transcriptional activation of pro-apoptotic BH3-only proteins, and mitochondrial outer membrane permeabilization (MOMP), activating caspase-dependent and caspase-independent intrinsic apoptosis. Mithramycin was highly neuroprotective in DNA-damage-dependent neuronal cell death, inhibiting chemotherapeutic-induced cell death cascades downstream of ATM and p53 phosphorylation/activation but upstream of p53-induced expression of pro-apoptotic molecules. Mithramycin reduced neuronal upregulation of BH3-only proteins and mitochondrial dysfunction, attenuated caspase-3/7 activation and caspase substrates' cleavage, and limited c-Jun activation. Chromatin immunoprecipitation indicated that mithramycin attenuates Sp1 binding to pro-apoptotic gene promoters without altering p53 binding suggesting it acts by removing cofactors required for p53 transactivation. In contrast, the DNA-damage-independent neuronal death models displayed caspase initiation in the absence of p53/BH3 activation and were not protected even when mithramycin reduced caspase activation. Interestingly, experimental TBI triggers a multiplicity of neuronal death mechanisms. Although markers of DNA-damage/p53-dependent intrinsic apoptosis are detected acutely in the injured cortex and are attenuated by mithramycin, these processes may play a reduced role in early neuronal death after TBI, as caspase-dependent mechanisms are repressed in mature neurons while other, mithramycin-resistant mechanisms are active. Our data suggest that Sp1 is required for p53-mediated transactivation of neuronal pro-apoptotic molecules and that mithramycin may attenuate neuronal cell death in conditions predominantly involving DNA-damage-induced p53-dependent intrinsic apoptosis.


Asunto(s)
Daño del ADN , Neuronas/patología , Plicamicina/farmacología , Animales , Apoptosis/efectos de los fármacos , Biomarcadores/metabolismo , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/patología , Muerte Celular/efectos de los fármacos , Etopósido/farmacología , Masculino , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Modelos Biológicos , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Plicamicina/uso terapéutico , Proteínas Proto-Oncogénicas c-jun/metabolismo , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Transcripción Genética/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo
15.
J Neurotrauma ; 37(24): 2709-2717, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-32484024

RESUMEN

Traumatic brain injury (TBI) patients are reported to experience long-term sensorimotor dysfunction, with gait deficits evident up to 2 years after the initial brain trauma. Experimental TBI including rodent models of penetrating ballistic-like brain injury and severe controlled cortical impact (CCI) can induce impairments in static and dynamic gait parameters. It is reported that the majority of deficits in gait-related parameters occur during the acute phase post-injury, as functional outcomes return toward baseline levels at chronic time points. In the present study, we carried out a longitudinal analysis of static, temporal and dynamic gait patterns following moderate-level CCI in adult male C57Bl/6J mice using the automated gait analysis apparatus, CatWalk. For comparison, we also performed longitudinal assessment of fine-motor coordination and function in CCI mice using more traditional sensorimotor behavioral tasks such as the beamwalk and accelerating rotarod tasks. We determined that longitudinal CatWalk analysis did not detect TBI-induced deficits in static, temporal, or dynamic gait parameters at acute or chronic time points. In contrast, the rotarod and beamwalk tasks showed that CCI mice had significant motor function impairments as demonstrated by deficits in balance and fine-motor coordination through 28 days post-injury. Stereological analysis confirmed that CCI produced a significant lesion in the parietal cortex at 28 days post-injury. Overall, these findings demonstrate that CatWalk analysis of gait parameters is not useful for assessment of long-term sensorimotor dysfunction after CCI, and that more traditional neurobehavioral tests should be used to quantify acute and chronic deficits in sensorimotor function.


Asunto(s)
Lesiones Traumáticas del Encéfalo/complicaciones , Análisis de la Marcha/métodos , Trastornos Psicomotores/etiología , Animales , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Desempeño Psicomotor
16.
Crit Care Med ; 48(5): e418-e428, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32149839

RESUMEN

OBJECTIVES: Respiratory infections in the postacute phase of traumatic brain injury impede optimal recovery and contribute substantially to overall morbidity and mortality. This study investigated bidirectional innate immune responses between the injured brain and lung, using a controlled cortical impact model followed by secondary Streptococcus pneumoniae infection in mice. DESIGN: Experimental study. SETTING: Research laboratory. SUBJECTS: Adult male C57BL/6J mice. INTERVENTIONS: C57BL/6J mice were subjected to sham surgery or moderate-level controlled cortical impact and infected intranasally with S. pneumoniae (1,500 colony-forming units) or vehicle (phosphate-buffered saline) at 3 or 60 days post-injury. MAIN RESULTS: At 3 days post-injury, S. pneumoniae-infected traumatic brain injury mice (TBI + Sp) had a 25% mortality rate, in contrast to no mortality in S. pneumoniae-infected sham (Sham + Sp) animals. TBI + Sp mice infected 60 days post-injury had a 60% mortality compared with 5% mortality in Sham + Sp mice. In both studies, TBI + Sp mice had poorer motor function recovery compared with TBI + PBS mice. There was increased expression of pro-inflammatory markers in cortex of TBI + Sp compared with TBI + PBS mice after both early and late infection, indicating enhanced post-traumatic neuroinflammation. In addition, monocytes from lungs of TBI + Sp mice were immunosuppressed acutely after traumatic brain injury and could not produce interleukin-1ß, tumor necrosis factor-α, or reactive oxygen species. In contrast, after delayed infection monocytes from TBI + Sp mice had higher levels of interleukin-1ß, tumor necrosis factor-α, and reactive oxygen species when compared with Sham + Sp mice. Increased bacterial burden and pathology was also found in lungs of TBI + Sp mice. CONCLUSIONS: Traumatic brain injury causes monocyte functional impairments that may affect the host's susceptibility to respiratory infections. Chronically injured mice had greater mortality following S. pneumoniae infection, which suggests that respiratory infections even late after traumatic brain injury may pose a more serious threat than is currently appreciated.


Asunto(s)
Lesiones Traumáticas del Encéfalo/epidemiología , Monocitos/metabolismo , Infecciones del Sistema Respiratorio/epidemiología , Infecciones Estafilocócicas/epidemiología , Animales , Lesiones Traumáticas del Encéfalo/fisiopatología , Modelos Animales de Enfermedad , Mediadores de Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Neumonía Estafilocócica , Infecciones del Sistema Respiratorio/mortalidad , Infecciones Estafilocócicas/mortalidad
17.
J Neurosci ; 40(14): 2960-2974, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32094203

RESUMEN

Chronic neuroinflammation with sustained microglial activation occurs following severe traumatic brain injury (TBI) and is believed to contribute to subsequent neurodegeneration and neurological deficits. Microglia, the primary innate immune cells in brain, are dependent on colony stimulating factor 1 receptor (CSF1R) signaling for their survival. In this preclinical study, we examined the effects of delayed depletion of chronically activated microglia on functional recovery and neurodegeneration up to 3 months postinjury. A CSF1R inhibitor, Plexxikon (PLX) 5622, was administered to adult male C57BL/6J mice at 1 month after controlled cortical impact to remove chronically activated microglia, and the inhibitor was withdrawn 1-week later to allow for microglial repopulation. Following TBI, the repopulated microglia displayed a ramified morphology similar to that of Sham uninjured mice, whereas microglia in vehicle-treated TBI mice showed the typical chronic posttraumatic hypertrophic morphology. PLX5622 treatment limited TBI-associated neuropathological changes at 3 months postinjury; these included a smaller cortical lesion, reduced hippocampal neuron cell death, and decreased NOX2- and NLRP3 inflammasome-associated neuroinflammation. Furthermore, delayed depletion of chronically activated microglia after TBI led to widespread changes in the cortical transcriptome and altered gene pathways involved in neuroinflammation, oxidative stress, and neuroplasticity. Using a variety of complementary neurobehavioral tests, PLX5622-treated TBI mice also had improved long-term motor and cognitive function recovery through 3 months postinjury. Together, these studies demonstrate that chronic phase removal of neurotoxic microglia after TBI using CSF1R inhibitors markedly reduce chronic neuroinflammation and associated neurodegeneration, as well as related motor and cognitive deficits.SIGNIFICANCE STATEMENT Traumatic brain injury (TBI) is a debilitating neurological disorder that can seriously impact the patient's quality of life. Microglial-mediated neuroinflammation is induced after severe TBI and contributes to neurological deficits and on-going neurodegenerative processes. Here, we investigated the effect of breaking the neurotoxic neuroinflammatory loop at 1-month after controlled cortical impact in mice by pharmacological removal of chronically activated microglia using a colony stimulating factor 1 receptor (CSF1R) inhibitor, Plexxikon 5622. Overall, we show that short-term elimination of microglia during the chronic phase of TBI followed by repopulation results in long-term improvements in neurological function, suppression of neuroinflammatory and oxidative stress pathways, and a reduction in persistent neurodegenerative processes. These studies are clinically relevant and support new concepts that the therapeutic window for TBI may be far longer than traditionally believed if chronic and evolving microglial-mediated neuroinflammation can be inhibited or regulated in a precise manner.


Asunto(s)
Lesiones Traumáticas del Encéfalo/patología , Microglía/efectos de los fármacos , Degeneración Nerviosa/patología , Fármacos Neuroprotectores/farmacología , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/antagonistas & inhibidores , Animales , Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/fisiopatología , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/fisiopatología
18.
J Neurosci ; 40(11): 2357-2370, 2020 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-32029532

RESUMEN

DNA damage and type I interferons (IFNs) contribute to inflammatory responses after traumatic brain injury (TBI). TBI-induced activation of microglia and peripherally-derived inflammatory macrophages may lead to tissue damage and neurological deficits. Here, we investigated the role of IFN-ß in secondary injury after TBI using a controlled cortical impact model in adult male IFN-ß-deficient (IFN-ß-/-) mice and assessed post-traumatic neuroinflammatory responses, neuropathology, and long-term functional recovery. TBI increased expression of DNA sensors cyclic GMP-AMP synthase and stimulator of interferon genes in wild-type (WT) mice. IFN-ß and other IFN-related and neuroinflammatory genes were also upregulated early and persistently after TBI. TBI increased expression of proinflammatory mediators in the cortex and hippocampus of WT mice, whereas levels were mitigated in IFN-ß-/- mice. Moreover, long-term microglia activation, motor, and cognitive function impairments were decreased in IFN-ß-/- TBI mice compared with their injured WT counterparts; improved neurological recovery was associated with reduced lesion volume and hippocampal neurodegeneration in IFN-ß-/- mice. Continuous central administration of a neutralizing antibody to the IFN-α/ß receptor (IFNAR) for 3 d, beginning 30 min post-injury, reversed early cognitive impairments in TBI mice and led to transient improvements in motor function. However, anti-IFNAR treatment did not improve long-term functional recovery or decrease TBI neuropathology at 28 d post-injury. In summary, TBI induces a robust neuroinflammatory response that is associated with increased expression of IFN-ß and other IFN-related genes. Inhibition of IFN-ß reduces post-traumatic neuroinflammation and neurodegeneration, resulting in improved neurological recovery. Thus, IFN-ß may be a potential therapeutic target for TBI.SIGNIFICANCE STATEMENT TBI frequently causes long-term neurological and psychiatric changes in head injury patients. TBI-induced secondary injury processes including persistent neuroinflammation evolve over time and can contribute to chronic neurological impairments. The present study demonstrates that TBI is followed by robust activation of type I IFN pathways, which have been implicated in microglial-associated neuroinflammation and chronic neurodegeneration. We examined the effects of genetic or pharmacological inhibition of IFN-ß, a key component of type I IFN mechanisms to address its role in TBI pathophysiology. Inhibition of IFN-ß signaling resulted in reduced neuroinflammation, attenuated neurobehavioral deficits, and limited tissue loss long after TBI. These preclinical findings suggest that IFN-ß may be a potential therapeutic target for TBI.


Asunto(s)
Daño Encefálico Crónico/fisiopatología , Lesiones Traumáticas del Encéfalo/fisiopatología , Interferón beta/fisiología , Degeneración Nerviosa/etiología , Animales , Daño Encefálico Crónico/etiología , Lesiones Traumáticas del Encéfalo/complicaciones , Corteza Cerebral/metabolismo , Conducta Exploratoria/fisiología , Regulación de la Expresión Génica , Hipocampo/metabolismo , Inflamación , Interferón beta/biosíntesis , Interferón beta/deficiencia , Interferón beta/genética , Masculino , Aprendizaje por Laberinto/fisiología , Trastornos de la Memoria/etiología , Trastornos de la Memoria/fisiopatología , Ratones , Ratones Endogámicos C57BL , Microglía/fisiología , Trastornos del Movimiento/etiología , Trastornos del Movimiento/fisiopatología , Distribución Aleatoria , Receptor de Interferón alfa y beta/inmunología , Transducción de Señal , Regulación hacia Arriba
19.
Brain Behav Immun ; 82: 372-381, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31505257

RESUMEN

Depression is a well-recognised effect of long-term treatment with interferon-alpha (IFN-α), a widely used treatment for chronic viral hepatitis and malignancy. In addition to the emotional disturbances, high incidences of painful symptoms such as headache and joint pain have also been reported following IFN-α treatment. The endocannabinoid system plays an important role in emotional and nociceptive processing, however it is unknown whether repeated IFN-α administration induces alterations in this system. The present study investigated nociceptive responding in the IFN-α-induced mouse model of depression and associated changes in the endocannabinoid system. Furthermore, the effects of modulating peripheral endocannabinoid tone on inflammatory pain-related behaviour in the IFN-α model was examined. Repeated IFN-α administration (8000 IU/g/day) to male C57/Bl6 mice increased immobility in the forced swim test and reduced sucrose preference, without altering body weight gain or locomotor activity, confirming development of the depressive-like phenotype. There was no effect of repeated IFN-α administration on latency to respond in the hot plate test on day 4 or 7 of treatment, however, formalin-evoked nociceptive behaviour was significantly increased in IFN-α treated mice following 8 days of IFN-α administration. 2-Arachidonoyl glycerol (2-AG) levels in the periaqueductal grey (PAG) and rostroventromedial medulla (RVM), and anandamide (AEA) levels in the RVM, were significantly increased in IFN-α-, but not saline-, treated mice following formalin administration. There was no change in endocannabinoid levels in the prefrontal cortex, spinal cord or paw tissue between saline- or IFNα-treated mice in the presence or absence of formalin. Furthermore, repeated IFN-α and/or formalin administration did not alter mRNA expression of genes encoding the endocannabinoid catabolic enzymes (fatty acid amide hydrolase or monoacylglycerol lipase) or endocannabinoid receptor targets (CB1, CB2 or PPARs) in the brain, spinal cord or paw tissue. Intra plantar administration of PF3845 (1 µg/10 µl) or MJN110 (1 µg/10 µl), inhibitors of AEA and 2-AG catabolism respectively, attenuated formalin-evoked hyperalgesia in IFN-α, but not saline-, treated mice. In summary, increasing peripheral endocannabinoid tone attenuates inflammatory hyperalgesia induced following repeated IFN-α administration. These data provide support for the endocannabinoid system in mediating and modulating heightened pain responding associated with IFNα-induced depression.


Asunto(s)
Depresión/metabolismo , Endocannabinoides/metabolismo , Interferón-alfa/metabolismo , Amidohidrolasas/metabolismo , Animales , Ácidos Araquidónicos/metabolismo , Glicéridos/metabolismo , Hiperalgesia/inmunología , Hiperalgesia/metabolismo , Interferón-alfa/farmacología , Masculino , Ratones , Monoacilglicerol Lipasas/metabolismo , Nociceptores/efectos de los fármacos , Nociceptores/metabolismo , Dolor/metabolismo , Dolor/fisiopatología , Alcamidas Poliinsaturadas/metabolismo
20.
J Pharmacol Exp Ther ; 368(3): 338-352, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30563941

RESUMEN

Neuroinflammation is one of the key secondary injury mechanisms triggered by traumatic brain injury (TBI). Microglial activation, a hallmark of brain neuroinflammation, plays a critical role in regulating immune responses after TBI and contributes to progressive neurodegeneration and neurologic deficits following brain trauma. Here we evaluated the role of neutral sphingomyelinase (nSMase) in microglial activation by examining the effects of the nSMase inhibitors altenusin and GW4869 in vitro (using BV2 microglia cells and primary microglia), as well as in a controlled cortical injury (CCI) model in adult male C57BL/6 mice. Pretreatment of altenusin or GW4869 prior to lipopolysaccharide (LPS) stimulation for 4 or 24 hours, significantly downregulated gene expression of the pro-inflammatory mediators TNF-α, IL-1ß, IL-6, iNOS, and CCL2 in microglia and reduced the release of nitric oxide and TNF-α These nSMase inhibitors also attenuated the release of microparticles and phosphorylation of p38 MAPK and ERK1/2. In addition, altenusin pretreatment also reduced the gene expression of multiple inflammatory markers associated with microglial activation after experimental TBI, including TNF-α, IL-1ß, IL-6, iNOS, CCL2, CD68, NOX2, and p22phox Overall, our data demonstrate that nSMase inhibitors attenuate multiple inflammatory pathways associated with microglial activation in vitro and after experimental TBI. Thus, nSMase inhibitors may represent promising therapeutics agents targeting neuroinflammation.


Asunto(s)
Lesiones Traumáticas del Encéfalo/metabolismo , Mediadores de Inflamación/metabolismo , Lipopolisacáridos/toxicidad , Microglía/metabolismo , Esfingomielina Fosfodiesterasa/antagonistas & inhibidores , Esfingomielina Fosfodiesterasa/metabolismo , Animales , Lesiones Traumáticas del Encéfalo/inducido químicamente , Lesiones Traumáticas del Encéfalo/prevención & control , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Células Cultivadas , Relación Dosis-Respuesta a Droga , Mediadores de Inflamación/antagonistas & inhibidores , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA