Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Nanobiotechnology ; 22(1): 482, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39135039

RESUMEN

Treatment-induced ototoxicity and accompanying hearing loss are a great concern associated with chemotherapeutic or antibiotic drug regimens. Thus, prophylactic cure or early treatment is desirable by local delivery to the inner ear. In this study, we examined a novel way of intratympanically delivered sustained nanoformulation by using crosslinked hybrid nanoparticle (cHy-NPs) in a thermoresponsive hydrogel i.e. thermogel that can potentially provide a safe and effective treatment towards the treatment-induced or drug-induced ototoxicity. The prophylactic treatment of the ototoxicity can be achieved by using two therapeutic molecules, Flunarizine (FL: T-type calcium channel blocker) and Honokiol (HK: antioxidant) co-encapsulated in the same delivery system. Here we investigated, FL and HK as cytoprotective molecules against cisplatin-induced toxic effects in the House Ear Institute - Organ of Corti 1 (HEI-OC1) cells and in vivo assessments on the neuromast hair cell protection in the zebrafish lateral line. We observed that cytotoxic protective effect can be enhanced by using FL and HK in combination and developing a robust drug delivery formulation. Therefore, FL-and HK-loaded crosslinked hybrid nanoparticles (FL-cHy-NPs and HK-cHy-NPs) were synthesized using a quality-by-design approach (QbD) in which design of experiment-central composite design (DoE-CCD) following the standard least-square model was used for nanoformulation optimization. The physicochemical characterization of FL and HK loaded-NPs suggested the successful synthesis of spherical NPs with polydispersity index < 0.3, drugs encapsulation (> 75%), drugs loading (~ 10%), stability (> 2 months) in the neutral solution, and appropriate cryoprotectant selection. We assessed caspase 3/7 apopototic pathway in vitro that showed significantly reduced signals of caspase 3/7 activation after the FL-cHy-NPs and HK-cHy-NPs (alone or in combination) compared to the CisPt. The final formulation i.e. crosslinked-hybrid-nanoparticle-embedded-in-thermogel was developed by incorporating drug-loaded cHy-NPs in poloxamer-407, poloxamer-188, and carbomer-940-based hydrogel. A combination of artificial intelligence (AI)-based qualitative and quantitative image analysis determined the particle size and distribution throughout the visible segment. The developed formulation was able to release the FL and HK for at least a month. Overall, a highly stable nanoformulation was successfully developed for combating treatment-induced or drug-induced ototoxicity via local administration to the inner ear.


Asunto(s)
Nanopartículas , Pez Cebra , Animales , Nanopartículas/química , Oído Interno/efectos de los fármacos , Hidrogeles/química , Cisplatino/farmacología , Cisplatino/química , Línea Celular , Compuestos de Bifenilo/química , Sistemas de Liberación de Medicamentos/métodos , Lignanos/química , Lignanos/farmacología , Lignanos/administración & dosificación , Ratones , Supervivencia Celular/efectos de los fármacos
2.
ACS Omega ; 9(26): 28764-28775, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38973877

RESUMEN

This research examines the correlation between interfacial characteristics and membrane distillation (MD) performance of copper oxide (Cu) nanoparticle-decorated electrospun carbon nanofibers (CNFs) polyvinylidene fluoride (PVDF) mixed matrix membranes. The membranes were fabricated by a bottom-up phase inversion method to incorporate a range of concentrations of CNF and Cu + CNF particles in the polymer matrix to tune the porosity, crystallinity, and wettability of the membranes. The resultant membranes were tested for their application in desalination by comparing the water vapor transport and salt rejection rates in the presence of Cu and CNF. Our results demonstrated a 64% increase in water vapor flux and a salt rejection rate of over 99.8% with just 1 wt % loading of Cu + CNF in the PVDF matrix. This was attributed to enhanced chemical heterogeneity, porosity, hydrophobicity, and crystallinity that was confirmed by electron microscopy, tensiometry, and scattering techniques. A machine learning segmentation model was trained on electron microscopy images to obtain the spatial distribution of pores in the membrane. An Autoregressive Integrated Moving Average with Explanatory Variable (ARIMAX) statistical time series model was trained on MD experimental data obtained for various membranes to forecast the membrane performance over an extended duration.

3.
Pharmaceutics ; 16(6)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38931917

RESUMEN

In the past several decades, polymeric microparticles (MPs) have emerged as viable solutions to address the limitations of standard pharmaceuticals and their corresponding delivery methods. While there are many preclinical studies that utilize polymeric MPs as a delivery vehicle, there are limited FDA-approved products. One potential barrier to the clinical translation of these technologies is a lack of understanding with regard to the manufacturing process, hindering batch scale-up. To address this knowledge gap, we sought to first identify critical processing parameters in the manufacturing process of blank (no therapeutic drug) and protein-loaded double-emulsion poly(lactic-co-glycolic) acid MPs through a quality by design approach. We then utilized the design of experiments as a tool to systematically investigate the impact of these parameters on critical quality attributes (e.g., size, surface morphology, release kinetics, inner occlusion size, etc.) of blank and protein-loaded MPs. Our results elucidate that some of the most significant CPPs impacting many CQAs of double-emulsion MPs are those within the primary or single-emulsion process (e.g., inner aqueous phase volume, solvent volume, etc.) and their interactions. Furthermore, our results indicate that microparticle internal structure (e.g., inner occlusion size, interconnectivity, etc.) can heavily influence protein release kinetics from double-emulsion MPs, suggesting it is a crucial CQA to understand. Altogether, this study identifies several important considerations in the manufacturing and characterization of double-emulsion MPs, potentially enhancing their translation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA