Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biol Psychiatry ; 94(7): 531-542, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-36931452

RESUMEN

BACKGROUND: Second-generation antipsychotics (SGAs) are frontline treatments for serious mental illness. Often, individual patients benefit only from some SGAs and not others. The mechanisms underlying this unpredictability in treatment efficacy remain unclear. All SGAs bind the dopamine D3 receptor (D3R) and are traditionally considered antagonists for dopamine receptor signaling. METHODS: Here, we used a combination of two-photon calcium imaging, in vitro signaling assays, and mouse behavior to assess signaling by SGAs at D3R. RESULTS: We report that some clinically important SGAs function as arrestin-3 agonists at D3R, resulting in modulation of calcium channels localized to the site of action potential initiation in prefrontal cortex pyramidal neurons. We further show that chronic treatment with an arrestin-3 agonist SGA, but not an antagonist SGA, abolishes D3R function through postendocytic receptor degradation by GASP1 (G protein-coupled receptor-associated sorting protein-1). CONCLUSIONS: These results implicate D3R-arrestin-3 signaling as a source of SGA variability, highlighting the importance of including arrestin-3 signaling in characterizations of drug action. Furthermore, they suggest that postendocytic receptor trafficking that occurs during chronic SGA treatment may contribute to treatment efficacy.


Asunto(s)
Antipsicóticos , Dopamina , Ratones , Animales , Arrestina beta 2/metabolismo , Antipsicóticos/farmacología , Receptores de Dopamina D3/metabolismo , Agonistas de Dopamina/farmacología , Tolerancia a Medicamentos , Receptores de Dopamina D1/metabolismo
2.
Neuron ; 97(5): 1094-1109.e9, 2018 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-29429936

RESUMEN

Despite the central role PSD-95 plays in anchoring postsynaptic AMPARs, how PSD-95 itself is tethered to postsynaptic sites is not well understood. Here we show that the F-actin binding protein α-actinin binds to the very N terminus of PSD-95. Knockdown (KD) of α-actinin phenocopies KD of PSD-95. Mutating lysine at position 10 or lysine at position 11 of PSD-95 to glutamate, or glutamate at position 53 or glutamate and aspartate at positions 213 and 217 of α-actinin, respectively, to lysine impairs, in parallel, PSD-95 binding to α-actinin and postsynaptic localization of PSD-95 and AMPARs. These experiments identify α-actinin as a critical PSD-95 anchor tethering the AMPAR-PSD-95 complex to postsynaptic sites.


Asunto(s)
Actinina/metabolismo , Homólogo 4 de la Proteína Discs Large/metabolismo , Potenciales Postsinápticos Excitadores/fisiología , Hipocampo/metabolismo , Actinina/química , Actinina/genética , Secuencia de Aminoácidos , Animales , Células Cultivadas , Homólogo 4 de la Proteína Discs Large/química , Homólogo 4 de la Proteína Discs Large/genética , Femenino , Células HEK293 , Humanos , Masculino , Estructura Secundaria de Proteína , Ratas
3.
EMBO J ; 37(1): 122-138, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29118000

RESUMEN

Postsynaptic density protein-95 (PSD-95) localizes AMPA-type glutamate receptors (AMPARs) to postsynaptic sites of glutamatergic synapses. Its postsynaptic displacement is necessary for loss of AMPARs during homeostatic scaling down of synapses. Here, we demonstrate that upon Ca2+ influx, Ca2+/calmodulin (Ca2+/CaM) binding to the N-terminus of PSD-95 mediates postsynaptic loss of PSD-95 and AMPARs during homeostatic scaling down. Our NMR structural analysis identified E17 within the PSD-95 N-terminus as important for binding to Ca2+/CaM by interacting with R126 on CaM. Mutating E17 to R prevented homeostatic scaling down in primary hippocampal neurons, which is rescued via charge inversion by ectopic expression of CaMR126E, as determined by analysis of miniature excitatory postsynaptic currents. Accordingly, increased binding of Ca2+/CaM to PSD-95 induced by a chronic increase in Ca2+ influx is a critical molecular event in homeostatic downscaling of glutamatergic synaptic transmission.


Asunto(s)
Señalización del Calcio , Calmodulina/metabolismo , Homólogo 4 de la Proteína Discs Large/metabolismo , Hipocampo/metabolismo , Neuronas/metabolismo , Sinapsis/fisiología , Animales , Calmodulina/química , Calmodulina/genética , Células Cultivadas , Homólogo 4 de la Proteína Discs Large/química , Homólogo 4 de la Proteína Discs Large/genética , Ácido Glutámico/metabolismo , Hipocampo/citología , Lipoilación , Modelos Moleculares , Neuronas/citología , Unión Proteica , Conformación Proteica , Ratas , Receptores de Glutamato/metabolismo , Transmisión Sináptica , Xenopus laevis/crecimiento & desarrollo , Xenopus laevis/metabolismo
4.
Biochemistry ; 56(28): 3669-3681, 2017 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-28613835

RESUMEN

The voltage-gated L-type Ca2+ channel CaV1.2 is crucial for initiating heartbeat and control of a number of neuronal functions such as neuronal excitability and long-term potentiation. Mutations of CaV1.2 subunits result in serious health problems, including arrhythmia, autism spectrum disorders, immunodeficiency, and hypoglycemia. Thus, precise control of CaV1.2 surface expression and localization is essential. We previously reported that α-actinin associates and colocalizes with neuronal CaV1.2 channels and that shRNA-mediated depletion of α-actinin significantly reduces localization of endogenous CaV1.2 in dendritic spines in hippocampal neurons. Here we investigated the hypothesis that direct binding of α-actinin to CaV1.2 supports its surface expression. Using two-hybrid screens and pull-down assays, we identified three point mutations (K1647A, Y1649A, and I1654A) in the central, pore-forming α11.2 subunit of CaV1.2 that individually impaired α-actinin binding. Surface biotinylation and flow cytometry assays revealed that CaV1.2 channels composed of the corresponding α-actinin-binding-deficient mutants result in a 35-40% reduction in surface expression compared to that of wild-type channels. Moreover, the mutant CaV1.2 channels expressed in HEK293 cells exhibit a 60-75% decrease in current density. The larger decrease in current density as compared to surface expression imparted by these α11.2 subunit mutations hints at the possibility that α-actinin not only stabilizes surface localization of CaV1.2 but also augments its ion conducting activity.


Asunto(s)
Actinina/metabolismo , Canales de Calcio Tipo L/metabolismo , Animales , Sitios de Unión , Canales de Calcio Tipo L/análisis , Células HEK293 , Humanos , Unión Proteica , Subunidades de Proteína/análisis , Subunidades de Proteína/metabolismo , Transporte de Proteínas , Conejos
5.
Neuron ; 87(1): 139-51, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-26074004

RESUMEN

Animals can detect and consume nutritive sugars without the influence of taste. However, the identity of the taste-independent nutrient sensor and the mechanism by which animals respond to the nutritional value of sugar are unclear. Here, we report that six neurosecretory cells in the Drosophila brain that produce Diuretic hormone 44 (Dh44), a homolog of the mammalian corticotropin-releasing hormone (CRH), were specifically activated by nutritive sugars. Flies in which the activity of these neurons or the expression of Dh44 was disrupted failed to select nutritive sugars. Manipulation of the function of Dh44 receptors had a similar effect. Notably, artificial activation of Dh44 receptor-1 neurons resulted in proboscis extensions and frequent episodes of excretion. Conversely, reduced Dh44 activity led to decreased excretion. Together, these actions facilitate ingestion and digestion of nutritive foods. We propose that the Dh44 system directs the detection and consumption of nutritive sugars through a positive feedback loop.


Asunto(s)
Encéfalo/metabolismo , Proteínas de Drosophila/metabolismo , Conducta Alimentaria/fisiología , Hormonas de Insectos/metabolismo , Neuronas/metabolismo , Edulcorantes Nutritivos/metabolismo , Animales , Drosophila , Proteínas de Drosophila/efectos de los fármacos , Retroalimentación Sensorial , Fructosa/farmacología , Glucosa/farmacología , Neurosecreción/efectos de los fármacos , Edulcorantes Nutritivos/farmacología , Receptores de Superficie Celular/efectos de los fármacos , Receptores de Superficie Celular/metabolismo , Trehalosa/farmacología
6.
Proc Natl Acad Sci U S A ; 109(50): 20697-702, 2012 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-23197833

RESUMEN

Innate behaviors are often executed in concert with accompanying physiological programs. How this coordination is achieved is poorly understood. Mating behavior and the transfer of sperm and seminal fluid (SSFT) provide a model for understanding how concerted behavioral and physiological programs are coordinated. Here we identify a male-specific neural pathway that coordinates the timing of SSFT with the duration of copulation behavior in Drosophila. Silencing four abdominal ganglion (AG) interneurons (INs) that contain the neuropeptide corazonin (Crz) both blocked SSFT and substantially lengthened copulation duration. Activating these Crz INs caused rapid ejaculation in isolated males, a phenotype mimicked by injection of Crz peptide. Crz promotes SSFT by activating serotonergic (5-HT) projection neurons (PNs) that innervate the accessory glands. Activation of these PNs in copulo caused premature SSFT and also shortened copulation duration. However, mating terminated normally when these PNs were silenced, indicating that SSFT is not required for appropriate copulation duration. Thus, the lengthened copulation duration phenotype caused by silencing Crz INs is independent of the block to SSFT. We conclude that four Crz INs independently control SSFT and copulation duration, thereby coupling the timing of these two processes.


Asunto(s)
Copulación/fisiología , Proteínas de Drosophila/fisiología , Drosophila melanogaster/fisiología , Neuropéptidos/fisiología , Transporte Espermático/fisiología , Animales , Animales Modificados Genéticamente , Proteínas de Drosophila/antagonistas & inhibidores , Proteínas de Drosophila/genética , Eyaculación/fisiología , Femenino , Ganglios/fisiología , Genes de Insecto , Interneuronas/fisiología , Masculino , Modelos Biológicos , Neuropéptidos/antagonistas & inhibidores , Neuropéptidos/genética , Receptores de Neuropéptido/fisiología
7.
Nature ; 431(7010): 854-9, 2004 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-15372051

RESUMEN

All animals exhibit innate behaviours in response to specific sensory stimuli that are likely to result from the activation of developmentally programmed neural circuits. Here we observe that Drosophila exhibit robust avoidance to odours released by stressed flies. Gas chromatography and mass spectrometry identifies one component of this 'Drosophila stress odorant (dSO)' as CO2. CO2 elicits avoidance behaviour, at levels as low as 0.1%. We used two-photon imaging with the Ca2+-sensitive fluorescent protein G-CaMP to map the primary sensory neurons governing avoidance to CO2. CO2 activates only a single glomerulus in the antennal lobe, the V glomerulus; moreover, this glomerulus is not activated by any of 26 other odorants tested. Inhibition of synaptic transmission in sensory neurons that innervate the V glomerulus, using a temperature-sensitive Shibire gene (Shi(ts)), blocks the avoidance response to CO2. Inhibition of synaptic release in the vast majority of other olfactory receptor neurons has no effect on this behaviour. These data demonstrate that the activation of a single population of sensory neurons innervating one glomerulus is responsible for an innate avoidance behaviour in Drosophila.


Asunto(s)
Reacción de Prevención/fisiología , Drosophila melanogaster/fisiología , Instinto , Neuronas Receptoras Olfatorias/citología , Neuronas Receptoras Olfatorias/fisiología , Aire/análisis , Animales , Reacción de Prevención/efectos de los fármacos , Encéfalo/citología , Encéfalo/efectos de los fármacos , Encéfalo/fisiología , Calcio/metabolismo , Dióxido de Carbono/análisis , Dióxido de Carbono/farmacología , Drosophila melanogaster/citología , Drosophila melanogaster/efectos de los fármacos , Hidroxiurea/farmacología , Ratones , Odorantes/análisis , Neuronas Receptoras Olfatorias/efectos de los fármacos , Estrés Fisiológico/fisiopatología
8.
Cell ; 112(6): 819-29, 2003 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-12654248

RESUMEN

Mammals detect temperature with specialized neurons in the peripheral nervous system. Four TRPV-class channels have been implicated in sensing heat, and one TRPM-class channel in sensing cold. The combined range of temperatures that activate these channels covers a majority of the relevant physiological spectrum sensed by most mammals, with a significant gap in the noxious cold range. Here, we describe the characterization of ANKTM1, a cold-activated channel with a lower activation temperature compared to the cold and menthol receptor, TRPM8. ANKTM1 is a distant family member of TRP channels with very little amino acid similarity to TRPM8. It is found in a subset of nociceptive sensory neurons where it is coexpressed with TRPV1/VR1 (the capsaicin/heat receptor) but not TRPM8. Consistent with the expression of ANKTM1, we identify noxious cold-sensitive sensory neurons that also respond to capsaicin but not to menthol.


Asunto(s)
Canales de Calcio/metabolismo , Frío , Neuronas Aferentes/metabolismo , Nociceptores/metabolismo , Termorreceptores/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo , Secuencia de Aminoácidos , Animales , Ancirinas/química , Células CHO , Capsaicina/farmacología , Células Cultivadas , Cricetinae , Femenino , Proteínas de la Membrana/química , Ratones , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/metabolismo , Estructura Terciaria de Proteína , Ratas , Ratas Sprague-Dawley , Canal Catiónico TRPA1 , Canales Catiónicos TRPC , Termorreceptores/química
9.
Science ; 296(5575): 2046-9, 2002 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-12016205

RESUMEN

Mechanical and thermal cues stimulate a specialized group of sensory neurons that terminate in the skin. Three members of the transient receptor potential (TRP) family of channels are expressed in subsets of these neurons and are activated at distinct physiological temperatures. Here, we describe the cloning and characterization of a novel thermosensitive TRP channel. TRPV3 has a unique threshold: It is activated at innocuous (warm) temperatures and shows an increased response at noxious temperatures. TRPV3 is specifically expressed in keratinocytes; hence, skin cells are capable of detecting heat via molecules similar to those in heat-sensing neurons.


Asunto(s)
Capsaicina/análogos & derivados , Proteínas de Transporte de Catión , Calor , Canales Iónicos/metabolismo , Queratinocitos/metabolismo , Secuencia de Aminoácidos , Animales , Animales Recién Nacidos , Northern Blotting , Células CHO , Capsaicina/farmacología , Línea Celular , Células Cultivadas , Clonación Molecular , Cricetinae , Células Epidérmicas , Epidermis/inervación , Epidermis/metabolismo , Ganglios Espinales/metabolismo , Humanos , Hibridación in Situ , Canales Iónicos/química , Canales Iónicos/genética , Potenciales de la Membrana , Ratones , Datos de Secuencia Molecular , Terminaciones Nerviosas/fisiología , Neuronas/fisiología , Técnicas de Placa-Clamp , ARN Mensajero/genética , ARN Mensajero/metabolismo , Rojo de Rutenio/farmacología , Transducción de Señal , Médula Espinal/metabolismo , Canales Catiónicos TRPV , Temperatura
10.
Cell ; 108(5): 705-15, 2002 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-11893340

RESUMEN

A distinct subset of sensory neurons are thought to directly sense changes in thermal energy through their termini in the skin. Very little is known about the molecules that mediate thermoreception by these neurons. Vanilloid Receptor 1 (VR1), a member of the TRP family of channels, is activated by noxious heat. Here we describe the cloning and characterization of TRPM8, a distant relative of VR1. TRPM8 is specifically expressed in a subset of pain- and temperature-sensing neurons. Cells overexpressing the TRPM8 channel can be activated by cold temperatures and by a cooling agent, menthol. Our identification of a cold-sensing TRP channel in a distinct subpopulation of sensory neurons implicates an expanded role for this family of ion channels in somatic sensory detection.


Asunto(s)
Canales de Calcio/metabolismo , Frío , Mentol/farmacología , Neuronas Aferentes/efectos de los fármacos , Neuronas Aferentes/metabolismo , Termorreceptores/metabolismo , Secuencia de Aminoácidos , Animales , Antipruriginosos/farmacología , Células CHO , Calcio/metabolismo , Canales de Calcio/clasificación , Canales de Calcio/genética , Clonación Molecular , Cricetinae , Humanos , Hibridación in Situ , Ratones , Datos de Secuencia Molecular , Técnicas de Placa-Clamp , Filogenia , Alineación de Secuencia , Canales Catiónicos TRPC , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA