Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Clin Microbiol Rev ; : e0004124, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39016564

RESUMEN

SUMMARYThe success of the Severe Acute Respiratory Syndrome Coronavirus 2 mRNA vaccines to lessen/prevent severe COVID-19 opened new opportunities to develop RNA vaccines to fight other infectious agents. HIV-1 is a lentivirus that integrates into the host cell genome and persists for the lifetime of infected cells. Multiple mechanisms of immune evasion have posed significant obstacles to the development of an effective HIV-1 vaccine over the last four decades since the identification of HIV-1. Recently, attempts to address some of these challenges have led to multiple studies that manufactured, optimized, and tested, in different animal models, mRNA-based HIV-1 vaccines. Several clinical trials have also been initiated or are planned to start soon. Here, we review the current strategies applied to HIV-1 mRNA vaccines, discuss different targeting approaches, summarize the latest findings, and offer insights into the challenges and future of HIV-1 mRNA vaccines.

2.
Trends Mol Med ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890027

RESUMEN

An effective HIV-1 vaccine is still not available, and most vaccine efficacy trials conducted over the years resulted in no significant overall protection. Here we highlight several insights gained from these trials as well as emerging questions that may be important for further guidance to advance current research directions.

3.
mBio ; 15(4): e0268623, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38470051

RESUMEN

The envelope glycoprotein (Env) trimer on the surface of human immunodeficiency virus type I (HIV-1) mediates viral entry into host CD4+ T cells and is the sole target of neutralizing antibodies. Broadly neutralizing antibodies (bnAbs) that target gp120 V3-glycan of HIV-1 Env trimer are potent and block the entry of diverse HIV-1 strains. Most V3-glycan bnAbs interact, to a different extent, with a glycan attached to N332, but Asn at this position is not absolutely conserved or required for HIV-1 entry based on the prevalence of N332 in different circulating HIV-1 strains from diverse clades. Here, we studied the effects of amino acid changes at position 332 of HIV-1AD8 Envs on HIV-1 sensitivity to antibodies, cold exposure, and soluble CD4. We further investigated how these changes affect Env function and HIV-1 infectivity in vitro. Our results suggest robust tolerability of HIV-1AD8 Env N332 to changes, with specific changes that resulted in extended exposure of gp120 V3 loop, which is typically concealed in most primary HIV-1 isolates. Viral evolution leading to Asn at position 332 of HIVAD8 Envs is supported by the selection advantage of high levels of cell-cell fusion, transmission, and infectivity with high levels of cell surface expression and slightly higher gp120 shedding than most N332 variants. Thus, tolerance of HIV-1AD8 Envs to different amino acids at position 332 provides increased flexibility to respond to changing conditions/environments and evade the immune system. Modeling studies of the distance between N332 glycan and specific bnAbs were in agreement with N332 glycan dependency on bnAb neutralization. Overall, our studies provide insights into the contribution of specific amino acids at position 332 to Env antigenicity, stability on ice, and conformational states. IMPORTANCE: Glycan attached to amino acid asparagine at position 332 of HIV-1 envelope glycoproteins is a main target of a subset of broadly neutralizing antibodies that block HIV-1 infection. Here, we defined the contribution of different amino acids at this position to Env antigenicity, stability on ice, and conformational states.


Asunto(s)
Infecciones por VIH , Seropositividad para VIH , VIH-1 , Humanos , Aminoácidos , Anticuerpos Neutralizantes , Anticuerpos ampliamente neutralizantes , Productos del Gen env del Virus de la Inmunodeficiencia Humana , Glicoproteínas , Anticuerpos Anti-VIH , Proteína gp120 de Envoltorio del VIH/genética , Hielo , Polisacáridos
4.
Bioinformatics ; 40(3)2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38426331

RESUMEN

MOTIVATION: Changing the course of the human immunodeficiency virus type I (HIV-1) pandemic is a high public health priority with approximately 39 million people currently living with HIV-1 (PLWH) and about 1.5 million new infections annually worldwide. Broadly neutralizing antibodies (bnAbs) typically target highly conserved sites on the HIV-1 envelope glycoproteins (Envs), which mediate viral entry, and block the infection of diverse HIV-1 strains. But different mechanisms of HIV-1 resistance to bnAbs prevent robust application of bnAbs for therapeutic and preventive interventions. RESULTS: Here we report the development of a new database that provides data and computational tools to aid the discovery of resistant features and may assist in analysis of HIV-1 resistance to bnAbs. Bioinformatic tools allow identification of specific patterns in Env sequences of resistant strains and development of strategies to elucidate the mechanisms of HIV-1 escape; comparison of resistant and sensitive HIV-1 strains for each bnAb; identification of resistance and sensitivity signatures associated with specific bnAbs or groups of bnAbs; and visualization of antibody pairs on cross-sensitivity plots. The database has been designed with a particular focus on user-friendly and interactive interface. Our database is a valuable resource for the scientific community and provides opportunities to investigate patterns of HIV-1 resistance and to develop new approaches aimed to overcome HIV-1 resistance to bnAbs. AVAILABILITY AND IMPLEMENTATION: HIResist is freely available at https://hiresist.ahc.umn.edu/.


Asunto(s)
Infecciones por VIH , VIH-1 , Humanos , Anticuerpos ampliamente neutralizantes , Anticuerpos Anti-VIH , Anticuerpos Neutralizantes , Productos del Gen env del Virus de la Inmunodeficiencia Humana , Epítopos
5.
mBio ; 15(1): e0242823, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38063394

RESUMEN

IMPORTANCE: HIV-1 can efficiently transmit from one cell to another but accurate quantification of this mode of transmission is still challenging. Here, we developed an ultrasensitive assay to measure HIV-1 transmission between cells and to evaluate HIV-1 escape from broadly neutralizing antibodies in primary human T cells. This assay will contribute to understanding the fundamental mechanisms of HIV-1 cell-to-cell transmission, allow evaluation of pre-existing or acquired HIV-1 resistance in clinical trials, and can be adapted to study the biology of other retroviruses.


Asunto(s)
Infecciones por VIH , Seropositividad para VIH , VIH-1 , Humanos , Anticuerpos ampliamente neutralizantes , Anticuerpos Anti-VIH , Anticuerpos Neutralizantes , Linfocitos T , Linfocitos T CD4-Positivos
6.
bioRxiv ; 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-38045336

RESUMEN

The envelope glycoprotein (Env) trimer on the surface of human immunodeficiency virus type I (HIV-1) mediates viral entry into host CD4+ T cells and is the sole target of neutralizing antibodies. Broadly neutralizing antibodies (bnAbs) that target gp120 V3-glycan of HIV-1 Env trimer are potent and block the entry of diverse HIV-1 strains. Most V3-glycan bnAbs interact, to a different extent, with a glycan attached to N332 but Asn at this position is not absolutely conserved or required for HIV-1 entry based on prevalence of N332 in different circulating HIV-1 strains from diverse clades. Here, we studied the effects of amino acid changes at position 332 of HIV-1AD8 Envs on HIV-1 sensitivity to antibodies, cold exposure, and soluble CD4. We further investigated how these changes affect Env function and HIV-1 infectivity in vitro. Our results suggest robust tolerability of HIV-1AD8 Env N332 to changes with specific changes that resulted in extended exposure of gp120 V3 loop, which is typically concealed in most primary HIV-1 isolates. Viral evolution leading to Asn at position 332 of HIVAD8 Envs is supported by the selection advantage of high levels of cell-cell fusion, transmission, and infectivity even though cell surface expression levels are lower than most N332 variants. Thus, tolerance of HIV-1AD8 Envs to different amino acids at position 332 provides increased flexibility to respond to changing conditions/environments and to evade the immune system. Modeling studies of the distance between N332 glycan and specific bnAbs was in agreement with N332 glycan dependency on bnAb neutralization. Overall, our studies provide insights into the contribution of specific amino acids at position 332 to Env antigenicity, stability on ice, and conformational states.

7.
NPJ Vaccines ; 8(1): 181, 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-37996435

RESUMEN

An effective human immunodeficiency virus type I (HIV-1) vaccine that robustly elicits broadly neutralizing antibodies (bnAbs) against HIV-1 envelope glycoproteins (Envs) to block viral entry is still not available. Thus, identifying triggers for elicitation of different types of anti-HIV-1 Env antibodies by vaccination could provide further guidance for immunogen design and vaccine development. Here, we studied the immune response to HIV-1 Env immunogens in rabbits. We show that sequential immunizations with conformation-specific Env immunogens can elicit low titer but broad neutralization responses against heterologous, neutralization-resistant (tier 2/3) transmitted/founder (T/F) HIV-1 strains. More importantly, an mRNA vaccine candidate that could mediate the presentation of a cytoplasmic tail-deleted (ΔCT) HIV-1AD8 Env immunogen on virus-like particles significantly increased the neutralization response. This strategy shifted the type of elicited antibodies, decreasing the level of binding to soluble Envs while significantly increasing their overall viral neutralization activity. The breadth and potency of neutralizing response against heterologous, T/F HIV-1 strains significantly increased in a subset of rabbits. Efficient neutralization activity was associated with high cellular immune responses specific to HIV-1 Envs. These results help to understand the immune response to different immunization schemes and will allow developing new approaches to selectively manipulate the type of humoral immune response by specific vaccination.

8.
bioRxiv ; 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37745449

RESUMEN

HIV-1 envelope glycoproteins (Envs) mediate viral entry and are the sole target of neutralizing antibodies. Envs of most primary HIV-1 strains exist in a closed conformation and occasionally sample more open states. Thus, current knowledge guides immunogen design to mimic the closed Env conformation as the preferred target for eliciting broadly neutralizing antibodies (bnAbs) to block HIV-1 entry. Here we show that Env-preferred conformations of 6 out of 13 (46%) transmitted/founder (T/F) strains tested are incompletely closed. As a result, entry of these T/Fs into target cells is sensitive to antibodies that recognize internal epitopes exposed on open Env conformations. A cryo-electron microscopy structure of unliganded, incompletely closed T/F Envs (1059-SOSIP) at 3.6 Å resolution exhibits an asymmetric configuration of Env protomers with increased sampling of states with incompletely closed trimer apex. Double electron-electron resonance spectroscopy provided further evidence for enriched occupancy of more open Env conformations. Consistent with conformational flexibility, 1059 Envs were associated with resistance to most bnAbs that exhibit reduced potency against functional Env intermediates. To follow the fate of incompletely closed Env in patients, we reconstructed de novo the post-transmission evolutionary pathway of a second T/F Env (CH040), which is sensitive to the V3-targeting antibody 19b and highly resistant to most bnAbs. Evolved viruses exhibited increased resistance to cold, soluble CD4 and 19b, all of which correlate with closing of the adapted Env trimer. Lastly, we show a correlation between efficient neutralization of multiple Env conformations and increased antiviral breadth of CD4-binding site (CD4bs) bnAbs. In particular, N6 bnAb, which uniquely recognizes different Env conformations, efficiently neutralizes 50% of the HIV-1 strains that were resistant to VRC01 and transmitted during the first-in-humans antibody-mediated prevention trial (HVTN 704). VRC01-resistant Envs are incompletely closed based on their sensitivity to cold and on partial sensitivity to antibodies targeting internal, typically occluded, epitopes. Most VRC01-resistant Envs retain the VRC01 epitope according to VRC01 binding to their gp120 subunit at concentrations that have no significant effect on virus entry, and they exhibit cross resistance to other CD4bs bnAbs that poorly recognize functional Env intermediates. Our findings refine current knowledge of Env conformational states and provide guidance for developing new strategies for bnAb immunotherapy and Env-based immunogen design.

10.
iScience ; 25(10): 105234, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36267915

RESUMEN

Activated-to-memory transitioning CD4+ T cells display elevated expression of the HIV-1 co-receptor CCR5 and are more prone to HIV-1 latent infection. Here, we show that p53-regulated miRNA-103 downmodulates CCR5 levels in CD4+ T lymphocytes. We reveal that miRNA-103 mimics, as well as Nutlin-3, an inhibitor of Mdm2-mediated p53 degradation, decrease CCR5-dependent HIV-1 infection. Using a dual-reporter virus, we subsequently validate that in transitioning CD4+ T cells, Nutlin-3 treatment decreases the frequency of both productively and latently infected cells via upregulation of miRNA-103. Importantly, we provide evidence that CD4+ T cells from HIV-1 elite controllers express less CCR5 than those from antiretroviral therapy-naïve progressors, an effect linked to a significant increase in miRNA-103 levels. By contributing to the control of CCR5 expression in CD4+ T cells, miRNA-103 is likely to play a key role in countering the establishment of latent HIV-1 reservoirs in vivo.

11.
ACS Infect Dis ; 8(10): 2045-2058, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36153947

RESUMEN

The entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) into host cells requires binding of the viral spike glycoprotein to the angiotensin-converting enzyme 2 (ACE2) receptor, which triggers subsequent conformational changes to facilitate viral and cellular fusion at the plasma membrane or following endocytosis. Here, we experimentally identified selective and broad inhibitors of SARS-CoV-2 entry that share a tricyclic ring (or similar) structure. The inhibitory effect was restricted to early steps during infection and the entry inhibitors interacted with the receptor binding domain of the SARS-CoV-2 spike but did not significantly interfere with receptor (ACE2) binding. Instead, some of these compounds induced conformational changes or affected spike assembly and blocked SARS-CoV-2 spike cell-cell fusion activity. The broad inhibitors define a highly conserved binding pocket that is present on the spikes of SARS-CoV-1, SARS-CoV-2, and all circulating SARS-CoV-2 variants tested and block SARS-CoV spike activity required for mediating viral entry. These compounds provide new insights into the SARS-CoV-2 spike topography, as well as into critical steps on the entry pathway, and can serve as lead candidates for the development of broad-range entry inhibitors against SARS-CoVs.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Glicoproteínas , Humanos , Peptidil-Dipeptidasa A/metabolismo , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/química , Internalización del Virus
12.
J Virol ; 96(15): e0088522, 2022 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-35856674

RESUMEN

Anti-retroviral therapy (ART) generally suppresses HIV replication to undetectable levels in peripheral blood, but immune activation associated with increased morbidity and mortality is sustained during ART, and infection rebounds when treatment is interrupted. To identify drivers of immune activation and potential sources of viral rebound, we modified RNAscope in situ hybridization to visualize HIV-producing cells as a standard against which to compare the following assays of potential sources of immune activation and virus rebound following treatment interruption: (i) envelope detection by induced transcription-based sequencing (EDITS) assay; (ii) HIV-Flow; (iii) Flow-FISH assays that can scan tissues and cell suspensions to detect rare cells expressing env mRNA, gag mRNA/Gag protein and p24; and (iv) an ultrasensitive immunoassay that detects p24 in cell/tissue lysates at subfemtomolar levels. We show that the sensitivities of these assays are sufficient to detect one rare HIV-producing/env mRNA+/p24+ cell in one million uninfected cells. These high-throughput technologies provide contemporary tools to detect and characterize rare cells producing virus and viral antigens as potential sources of immune activation and viral rebound. IMPORTANCE Anti-retroviral therapy (ART) has greatly improved the quality and length of life for people living with HIV, but immune activation does not normalize during ART, and persistent immune activation has been linked to increased morbidity and mortality. We report a comparison of assays of two potential sources of immune activation during ART: rare cells producing HIV and the virus' major viral protein, p24, benchmarked on a cell model of active and latent infections and a method to visualize HIV-producing cells. We show that assays of HIV envelope mRNA (EDITS assay), gag mRNA, and p24 (Flow-FISH, HIV-Flow. and ultrasensitive p24 immunoassay) detect HIV-producing cells and p24 at sensitivities of one infected cell in a million uninfected cells, thereby providing validated tools to explore sources of immune activation during ART in the lymphoid and other tissue reservoirs.


Asunto(s)
Infecciones por VIH , VIH-1 , ARN Viral , Tropismo Viral , Activación Viral , Fármacos Anti-VIH/administración & dosificación , Fármacos Anti-VIH/uso terapéutico , Antígenos Virales/análisis , Antígenos Virales/genética , Antígenos Virales/metabolismo , Linfocitos T CD4-Positivos , Proteína p24 del Núcleo del VIH/genética , Infecciones por VIH/inmunología , Infecciones por VIH/virología , VIH-1/genética , VIH-1/crecimiento & desarrollo , VIH-1/inmunología , Humanos , Inmunoensayo , Hibridación Fluorescente in Situ , ARN Mensajero/análisis , ARN Viral/análisis , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética
13.
Viruses ; 14(7)2022 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-35891369

RESUMEN

SERINC5 incorporates into HIV-1 particles and inhibits the ability of Env glycoprotein to mediate virus-cell fusion. SERINC5-resistance maps to Env, with primary isolates generally showing greater resistance than laboratory-adapted strains. Here, we examined a relationship between the inhibition of HIV-1 infectivity and the rate of Env inactivation using a panel of SERINC5-resistant and -sensitive HIV-1 Envs. SERINC5 incorporation into pseudoviruses resulted in a faster inactivation of sensitive compared to resistant Env strains. A correlation between fold reduction in infectivity and the rate of inactivation was also observed for multiple Env mutants known to stabilize and destabilize the closed Env structure. Unexpectedly, most mutations disfavoring the closed Env conformation rendered HIV-1 less sensitive to SERINC5. In contrast, functional inactivation of SERINC5-containing viruses was significantly accelerated in the presence of a CD4-mimetic compound, suggesting that CD4 binding sensitizes Env to SERINC5. Using a small molecule inhibitor that selectively targets the closed Env structure, we found that, surprisingly, SERINC5 increases the potency of this compound against a laboratory-adapted Env which prefers a partially open conformation, indicating that SERINC5 may stabilize the closed trimeric Env structure. Our results reveal a complex effect of SERINC5 on Env conformational dynamics that promotes Env inactivation and is likely responsible for the observed restriction phenotype.


Asunto(s)
Infecciones por VIH , VIH-1 , Genes env , Células HEK293 , Proteína gp120 de Envoltorio del VIH/genética , VIH-1/fisiología , Humanos , Proteínas de la Membrana/metabolismo , Mutación
14.
Cell Rep ; 38(8): 110406, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35196491

RESUMEN

T cells actively migrate along reticular networks within lymphoid organs in search for cognate antigen, but how these behaviors impact HIV entry and infection is unclear. Here, we show that migratory T cells in 3D collagen matrix display significantly enhanced infection and integration by cell-free R5-tropic lab adapted and transmitted/founder molecular HIV clones in the absence of exogenous cytokines or cationic polymers. Using two different collagen matrices that either support or restrict T cell migration, we observe high levels of HIV fusion in migratory T cells, whereas non-motile T cells display low viral entry and integration. Motile T cells were less sensitive to combination antiretroviral drugs and were able to freely migrate into regions with high HIV densities, resulting in high infection rates. Together, our studies indicate that the environmental context in which initial HIV-T cell encounters occur modulates HIV-1 entry and integration efficiencies.


Asunto(s)
Linfocitos T CD4-Positivos/citología , Movimiento Celular , Infecciones por VIH , VIH-1 , Internalización del Virus , Células Cultivadas , Infecciones por VIH/inmunología , Infecciones por VIH/virología , VIH-1/fisiología , Humanos , Receptores CCR5
15.
mBio ; 13(1): e0275221, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35012342

RESUMEN

Infection of rhesus macaques with simian-human immunodeficiency viruses (SHIVs) is the preferred model system for vaccine development because SHIVs encode human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins (Envs)-a key target of HIV-1 neutralizing antibodies. Since the goal of vaccines is to prevent new infections, SHIVs encoding circulating HIV-1 Env are desired as challenge viruses. Development of such biologically relevant SHIVs has been challenging, as they fail to infect rhesus macaques, mainly because most circulating HIV-1 Envs do not use rhesus CD4 (rhCD4) receptor for viral entry. Most primary HIV-1 Envs exist in a closed conformation and occasionally transit to a downstream, open conformation through an obligate intermediate conformation. Here, we provide genetic evidence that open Env conformations can overcome the rhCD4 entry barrier and increase replication of SHIVs in rhesus lymphocytes. Consistent with prior studies, we found that circulating HIV-1 Envs do not use rhCD4 efficiently for viral entry. However, by using HIV-1 Envs with single amino acid substitutions that alter their conformational state, we found that transitions to intermediate and open Env conformations allow usage of physiological levels of rhCD4 for viral entry. We engineered these single amino acid substitutions in the transmitted/founder HIV-1BG505 Envs encoded by SHIV-BG505 and found that open Env conformation enhances SHIV replication in rhesus lymphocytes. Lastly, CD4-mediated SHIV pulldown, sensitivity to soluble CD4, and fusogenicity assays indicated that open Env conformation promotes efficient rhCD4 binding and viral-host membrane fusion. These findings identify the conformational state of HIV-1 Env as a major determinant for rhCD4 usage, viral fusion, and SHIV replication. IMPORTANCE Rhesus macaques are a critical animal model for preclinical testing of HIV-1 vaccine and prevention approaches. However, HIV-1 does not replicate in rhesus macaques, and thus, chimeric simian-human immunodeficiency viruses (SHIVs), which encode HIV-1 envelope glycoproteins (Envs), are used as surrogate challenge viruses to infect rhesus macaques for modeling HIV-1 infection. Development of SHIVs encoding Envs from clinically relevant, circulating HIV-1 variants has been extremely challenging, as such SHIVs replicate poorly, if at all, in rhesus lymphocytes. This is most probably because many circulating HIV-1 Envs do not use rhesus CD4 efficiently for viral entry. In this study, we identified conformational state of HIV-1 envelope as a key determinant for rhesus CD4 usage, viral-host membrane fusion, and SHIV replication in rhesus lymphocytes.


Asunto(s)
Infecciones por VIH , VIH-1 , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Animales , Humanos , VIH-1/genética , Macaca mulatta , Virus de la Inmunodeficiencia de los Simios/genética , Moléculas de Adhesión Celular , Replicación Viral/genética
16.
FEBS J ; 289(12): 3317-3334, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-33705608

RESUMEN

Protection from human immunodeficiency virus (HIV) acquisition will likely require an effective vaccine that elicits antibodies against the HIV-1 envelope glycoproteins (Envs), which are the sole target of neutralizing antibodies and a main focus of vaccine development. Adjuvants have been widely used to augment the magnitude and longevity of the adaptive immune responses to immunizations with HIV-1 Envs and to guide the development of specific immune responses. Here, we review the adjuvants that have been used in combination with HIV-1 Envs in several preclinical and human clinical trials in recent years. We summarize the interactions between the HIV-1 Envs and adjuvants, and highlight the routes of vaccine administration for various formulations. We then discuss the use of combinations of different adjuvants, the potential effect of adjuvants on the elicitation of antibodies enriched in somatic hypermutation and containing long complementarity-determining region 3 of the antibody heavy chain, and the elicitation of non-neutralizing antibodies.


Asunto(s)
Vacunas contra el SIDA , Infecciones por VIH , VIH-1 , Adyuvantes Inmunológicos , Anticuerpos Neutralizantes , Infecciones por VIH/prevención & control , Humanos , Inmunidad , Productos del Gen env del Virus de la Inmunodeficiencia Humana
17.
Cell Rep ; 36(9): 109622, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34469717

RESUMEN

HIV-1 entry into host cells leads to one of the following three alternative fates: (1) HIV-1 elimination by restriction factors, (2) establishment of HIV-1 latency, or (3) active viral replication in target cells. Here, we report the development of an improved system for monitoring HIV-1 fate at single-cell and population levels and show the diverse applications of this system to study specific aspects of HIV-1 fate in different cell types and under different environments. An analysis of the transcriptome of infected, primary CD4+ T cells that support alternative fates of HIV-1 identifies differential gene expression signatures in these cells. Small molecules are able to selectively target cells that support viral replication with no significant effect on viral latency. In addition, HIV-1 fate varies in different tissues following infection of humanized mice in vivo. Altogether, these studies indicate that intra- and extra-cellular environments contribute to the fate of HIV-1 infection.


Asunto(s)
Linfocitos T CD4-Positivos/virología , Microambiente Celular , Infecciones por VIH/virología , VIH-1/patogenicidad , Animales , Fármacos Anti-VIH/farmacología , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica , Células HEK293 , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/genética , Infecciones por VIH/inmunología , VIH-1/efectos de los fármacos , VIH-1/crecimiento & desarrollo , VIH-1/inmunología , Interacciones Huésped-Patógeno , Humanos , Ratones Endogámicos NOD , Ratones SCID , Células THP-1 , Transcriptoma , Internalización del Virus , Latencia del Virus , Replicación Viral
18.
ACS Infect Dis ; 7(8): 2209-2210, 2021 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-34080826

RESUMEN

The COVID-19 (coronavirus disease 2019) pandemic has spread worldwide, leading to the deaths of millions and changing the way we live; we all hope to see the end of the pandemic soon. Nonetheless, an urgent need for medical interventions led to unprecedented and focused research efforts to translate scientific knowledge to new therapeutic and preventative interventions. Procedures were simplified, and new norms were established to expedite high-quality scientific output. We do hope that these changes will be adopted and streamlined to advance science in the future.


Asunto(s)
COVID-19 , Pandemias , Humanos , SARS-CoV-2
19.
ACS Infect Dis ; 7(6): 1558-1568, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-34006087

RESUMEN

Human immunodeficiency virus (HIV-1) envelope glycoproteins (Envs) are a main focus of immunogen design and vaccine development. Broadly neutralizing antibodies (bnAbs) against HIV-1 Envs target conserved epitopes and neutralize multiple HIV-1 viral strains. Nevertheless, application of bnAbs to therapy and prevention is limited by resistant strains that are developed or preexist within the viral population. Here we studied the HIV-1NAB9 Envs that were isolated from a person who injects drugs and exhibits high and broad resistance to multiple bnAbs. We identified an insertion of 11 amino acids in the V1 loop that allosterically modulates HIV-1NAB9 sensitivity to the PGT145 bnAb, which targets the Env trimer association domain and supports high level viral infectivity. Our data provide new insights into the mechanisms of HIV-1 resistance to bnAbs and into allosteric connectivity between different HIV-1 Env domains.


Asunto(s)
Anticuerpos Neutralizantes/farmacología , Farmacorresistencia Viral/genética , Anticuerpos Anti-VIH/farmacología , VIH-1 , Productos del Gen env del Virus de la Inmunodeficiencia Humana , Glicoproteínas , VIH-1/efectos de los fármacos , VIH-1/genética , Humanos , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética
20.
STAR Protoc ; 1(3): 100133, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33377027

RESUMEN

HIV-1 envelope glycoproteins (Envs) bind to CD4 receptor and CCR5/CXCR4 coreceptor and mediate viral entry (Feng et al., 1996; Herschhorn et al., 2016, 2017; Kwong et al., 1998). HIV-1 Envs are the sole target of neutralizing antibodies and a main focus of vaccine development (Flemming et al., 2018). Here, we provide a step-by-step protocol to measure Env sensitivity to ligands, cold, and small molecules, as well as to study viral infectivity and to dissect parameters affecting HIV-1 Env function. For complete details on the use and execution of this protocol, please refer to Harris et al. (2020).


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Productos del Gen env del Virus de la Inmunodeficiencia Humana/efectos de los fármacos , Productos del Gen env del Virus de la Inmunodeficiencia Humana/aislamiento & purificación , Anticuerpos Neutralizantes/inmunología , Antígenos CD4/metabolismo , Genes env/genética , Glicoproteínas/efectos de los fármacos , Glicoproteínas/aislamiento & purificación , Glicoproteínas/fisiología , Anticuerpos Anti-VIH/inmunología , VIH-1/genética , VIH-1/metabolismo , Humanos , Ligandos , Receptores CCR5/metabolismo , Internalización del Virus , Productos del Gen env del Virus de la Inmunodeficiencia Humana/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...