Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Sci (Camb) ; 9: 1053-1068, 2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-37701755

RESUMEN

In December 2019, SARS-CoV-2, the virus that causes coronavirus disease 2019, was first reported and subsequently triggered a global pandemic. Wastewater monitoring, a strategy for quantifying viral gene concentrations from wastewater influents within a community, has served as an early warning and management tool for the spread of SARS-CoV-2 in a community. Ohio built a collaborative statewide wastewater monitoring network that is supported by eight labs (university, government, and commercial laboratories) with unique sample processing workflows. Consequently, we sought to characterize the variability in wastewater monitoring results for network labs. Across seven trials between October 2020 and November 2021, eight participating labs successfully quantified two SARS-CoV-2 RNA targets and human fecal indicator virus targets in wastewater sample aliquots with reproducible results, although recovery efficiencies of spiked surrogates ranged from 3 to 75%. When SARS-CoV-2 gene fragment concentrations were adjusted for recovery efficiency and flow, the proportion of variance between laboratories was minimized, serving as the best model to account for between-lab variance. Another adjustment factor (alone and in different combinations with the above factors) considered to account for sample and measurement variability includes fecal marker normalization. Genetic quantification variability can be attributed to many factors, including the methods, individual samples, and water quality parameters. In addition, statistically significant correlations were observed between SARS-CoV-2 RNA and COVID-19 case numbers, supporting the notion that wastewater surveillance continues to serve as an effective monitoring tool. This study serves as a real-time example of multi-laboratory collaboration for public health preparedness for infectious diseases.

2.
Environ Microbiol ; 22(3): 952-963, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31390129

RESUMEN

Chlorophyll (Chl) f and d are the most recently discovered chlorophylls, enabling cyanobacteria to harvest near-infrared radiation (NIR) at 700-780 nm for oxygenic photosynthesis. Little is known about the occurrence of these pigments in terrestrial habitats. Here, we provide first details on spectral photon irradiance within the photic zones of four terrestrial cave systems in concert with a detailed investigation of photopigmentation, light reflectance and microbial community composition. We frequently found Chl f and d along the photic zones of caves characterized by low light enriched in NIR and inhabited by cyanobacteria producing NIR-absorbing pigments. Surprisingly, deeper parts of caves still contained NIR, an effect likely attributable to the reflectance of specific wavelengths by the surface materials of cave walls. We argue that the stratification of microbial communities across the photic zones of cave entrances resembles the light-driven species distributions in forests and aquatic environments.


Asunto(s)
Cuevas/microbiología , Cianobacterias/fisiología , Ecosistema , Rayos Infrarrojos , Clorofila/análogos & derivados , Clorofila/metabolismo , Cianobacterias/efectos de la radiación , Bosques , Fotosíntesis/fisiología
3.
Front Microbiol ; 9: 2823, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30534116

RESUMEN

Despite the importance of karst aquifers as a source of drinking water, little is known about the role of microorganisms in maintaining the quality of this water. One of the limitations in exploring the microbiology of these environments is access, which is usually limited to wells and surface springs. In this study, we compared the microbiology of the Madison karst aquifer sampled via the potentiometric lakes of Wind Cave with surface sampling wells and a spring. Our data indicated that only the Streeter Well (STR), which is drilled into the same hydrogeologic domain as the Wind Cave Lakes (WCL), allowed access to water with the same low biomass (1.56-9.25 × 103 cells mL-1). Filtration of ∼300 L of water from both of these sites through a 0.2 µm filter allowed the collection of sufficient cells for DNA extraction, PCR amplification of 16S rRNA gene sequences, and identification through pyrosequencing. The results indicated that bacteria (with limited archaea and no detectable eukaryotic organisms) dominated both water samples; however, there were significant taxonomic differences in the bacterial populations of the samples. The STR sample was dominated by a single phylotype within the Gammaproteobacteria (Order Acidithiobacillales), which dramatically reduced the overall diversity and species richness of the population. In WCL, despite less organic carbon, the bacterial population was significantly more diverse, including significant contributions from the Gammaproteobacteria, Firmicutes, Chloroflexi, Actinobacteria, Planctomycetes, Fusobacter, and Omnitrophica phyla. Comparisons with similar oligotrophic environments suggest that karst aquifers have a greater species richness than comparable surface environs. These data also demonstrate that Wind Cave provides a unique opportunity to sample a deep, subterranean aquifer directly, and that the microbiology of such aquifers may be more complex than previously anticipated.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA