Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Nature ; 564(7736): 430-433, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30518863

RESUMEN

Heart transplantation is the only cure for patients with terminal cardiac failure, but the supply of allogeneic donor organs falls far short of the clinical need1-3. Xenotransplantation of genetically modified pig hearts has been discussed as a potential alternative4. Genetically multi-modified pig hearts that lack galactose-α1,3-galactose epitopes (α1,3-galactosyltransferase knockout) and express a human membrane cofactor protein (CD46) and human thrombomodulin have survived for up to 945 days after heterotopic abdominal transplantation in baboons5. This model demonstrated long-term acceptance of discordant xenografts with safe immunosuppression but did not predict their life-supporting function. Despite 25 years of extensive research, the maximum survival of a baboon after heart replacement with a porcine xenograft was only 57 days and this was achieved, to our knowledge, only once6. Here we show that α1,3-galactosyltransferase-knockout pig hearts that express human CD46 and thrombomodulin require non-ischaemic preservation with continuous perfusion and control of post-transplantation growth to ensure long-term orthotopic function of the xenograft in baboons, the most stringent preclinical xenotransplantation model. Consistent life-supporting function of xenografted hearts for up to 195 days is a milestone on the way to clinical cardiac xenotransplantation7.


Asunto(s)
Trasplante de Corazón , Xenoinjertos/trasplante , Papio , Porcinos , Trasplante Heterólogo , Animales , Anticuerpos/análisis , Anticuerpos/sangre , Proteínas del Sistema Complemento/análisis , Enzimas/sangre , Fibrina/análisis , Galactosiltransferasas/deficiencia , Galactosiltransferasas/genética , Xenoinjertos/patología , Humanos , Hígado/enzimología , Masculino , Proteína Cofactora de Membrana/genética , Proteína Cofactora de Membrana/metabolismo , Miocardio/enzimología , Necrosis , Perfusión , Recuento de Plaquetas , Tiempo de Protrombina , Trombomodulina/genética , Trombomodulina/metabolismo , Factores de Tiempo
3.
Xenotransplantation ; 22(6): 427-42, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26602740

RESUMEN

BACKGROUND: As a step towards clinical cardiac xenotransplantation, our experimental heterotopic intrathoracic xenotransplantation model offers a beating and ejecting donor heart while retaining the recipient's native organ as a backup in case of graft failure. Clinically applicable immunosuppressive regimens (IS) were investigated first, then treatments known to be effective in hypersensitized patients or those with recalcitrant rejection reactions. METHODS: Consecutive experiments were carried out between 2009 and 2013. Twenty-one genetically modified pigs (GGTA1-knockout/hCD46/± thrombomodulin, in one case HLA-E instead) were used as donors. In all experiments, two cycles of immunoabsorption reduced preformed antibodies. Recipient baboons were divided into two groups according to IS regimen: In group one (n = 10), pre-treatment started either one (anti-CD20) or four weeks (anti-CD20 plus the proteasome inhibitor bortezomib) prior to transplantation. The extended conventional (as for allotransplantation) immunosuppressive maintenance regimen included anti-thymocyte globuline, tacrolimus, mycophenolate mofetil, methylprednisolone and weekly anti-CD20. In group two (n = 11), myeloablative pre-treatment as in multiple myeloma patients (long and short regimens) was added to extended conventional IS; postoperative total thoracic and abdominal lymphoid irradiation (TLI; single dose of 600 cGY) was used to further reduce antibody-producing cells. RESULTS: In the perioperative course, the surgical technique was safely applied: 19 baboons were weaned off extracorporeal circulation and 17 extubated. Nine animals were lost in the early postoperative course due to causes unrelated to surgical technique or IS regimen. Excluding these early failures, median graft survival times of group 1 and 2 were 18.5 (12-50) days and 16 (7-35) days. Necropsy examination of group 1 donor organs revealed hypertrophy of the left ventricular wall in the six longer-lasting grafts; myocardial histology confirmed pre-clinical suspicion of humoral rejection, which was not inhibited by the extended conventional IS including intensified treatments, and signs of thrombotic microangiopathy. Grafts of group 2 presented with only mild-to-moderate features of humoral rejection and thrombotic microangiopathy, except in one case of delayed rejection on day 17. The other experiments in this group were terminated because of untreatable pulmonary oedema, recurring ventricular fibrillation, Aspergillus sepsis, as well as a combination of a large donor organ and late toxic side effects due to TLI. CONCLUSIONS: Longer-term results were difficult to achieve in this model due to the IS regimens used. However, we conclude that heterotopic intrathoracic heart transplantation may be an option for clinical xenotransplantation.


Asunto(s)
Rechazo de Injerto/inmunología , Supervivencia de Injerto/inmunología , Trasplante de Corazón , Inmunosupresores/farmacología , Animales , Animales Modificados Genéticamente , Anticuerpos/inmunología , Anticuerpos/farmacología , Trasplante de Corazón/métodos , Porcinos , Trasplante Heterólogo/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...