Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 158(23)2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37338028

RESUMEN

We present an update of the DScribe package, a Python library for atomistic descriptors. The update extends DScribe's descriptor selection with the Valle-Oganov materials fingerprint and provides descriptor derivatives to enable more advanced machine learning tasks, such as force prediction and structure optimization. For all descriptors, numeric derivatives are now available in DScribe. For the many-body tensor representation (MBTR) and the Smooth Overlap of Atomic Positions (SOAP), we have also implemented analytic derivatives. We demonstrate the effectiveness of the descriptor derivatives for machine learning models of Cu clusters and perovskite alloys.

2.
Adv Sci (Weinh) ; 7(2): 1903667, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31993299

RESUMEN

[This corrects the article DOI: 10.1002/advs.201900808.].

3.
Adv Sci (Weinh) ; 6(21): 1900808, 2019 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-31728276

RESUMEN

Data-driven science is heralded as a new paradigm in materials science. In this field, data is the new resource, and knowledge is extracted from materials datasets that are too big or complex for traditional human reasoning-typically with the intent to discover new or improved materials or materials phenomena. Multiple factors, including the open science movement, national funding, and progress in information technology, have fueled its development. Such related tools as materials databases, machine learning, and high-throughput methods are now established as parts of the materials research toolset. However, there are a variety of challenges that impede progress in data-driven materials science: data veracity, integration of experimental and computational data, data longevity, standardization, and the gap between industrial interests and academic efforts. In this perspective article, the historical development and current state of data-driven materials science, building from the early evolution of open science to the rapid expansion of materials data infrastructures are discussed. Key successes and challenges so far are also reviewed, providing a perspective on the future development of the field.

4.
J Chem Phys ; 150(20): 204121, 2019 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-31153160

RESUMEN

Instant machine learning predictions of molecular properties are desirable for materials design, but the predictive power of the methodology is mainly tested on well-known benchmark datasets. Here, we investigate the performance of machine learning with kernel ridge regression (KRR) for the prediction of molecular orbital energies on three large datasets: the standard QM9 small organic molecules set, amino acid and dipeptide conformers, and organic crystal-forming molecules extracted from the Cambridge Structural Database. We focus on the prediction of highest occupied molecular orbital (HOMO) energies, computed at the density-functional level of theory. Two different representations that encode the molecular structure are compared: the Coulomb matrix (CM) and the many-body tensor representation (MBTR). We find that KRR performance depends significantly on the chemistry of the underlying dataset and that the MBTR is superior to the CM, predicting HOMO energies with a mean absolute error as low as 0.09 eV. To demonstrate the power of our machine learning method, we apply our model to structures of 10k previously unseen molecules. We gain instant energy predictions that allow us to identify interesting molecules for future applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA