Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Front Vet Sci ; 11: 1375329, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38799725

RESUMEN

Introduction: The reduction of nitrogen (N) and phosphorus (P) in ruminant feed is desirable due to costs and negative environmental impact. Ruminants are able to utilize N and P through endogenous recycling, particularly in times of scarcity. When N and/or P were reduced, changes in mineral homeostasis associated with modulation of renal calcitriol metabolism occurred. The aim of this study was to investigate the potential effects of dietary N- and/or P-reduction on the regulatory mechanisms of mineral transport in the kidney and its hormonal regulation in young goats. Results: During N-reduction, calcium (Ca) and magnesium (Mg) concentrations in blood decreased, accompanied by a lower protein expression of cytochrome P450 family 27 subfamily B member 1 (CYP27B1) (p = 0.016). The P-reduced fed goats had low blood phosphate concentrations with simultaneously high Ca and Mg levels. The insulin-like growth factor 1 concentrations decreased significantly with P-reduction. Furthermore, gene expression of CYP27B1 (p < 0.001) and both gene (p = 0.025) and protein (p = 0.016) expression of the fibroblast growth factor receptor 1c isoform in the kidney were also significantly reduced during a P-reduced diet. ERK1/2 activation exhibited a trend toward reduction in P-reduced animals. Interestingly, calcitriol concentrations remained unaffected by either restriction individually, but interacted significantly with N and P (p = 0.014). Additionally, fibroblast growth factor 23 mRNA expression in bone decreased significantly with P-restriction (p < 0.001). Discussion: These results shed light on the complex metabolic and regulatory responses of mineral transport of young goats to dietary N and P restriction.

2.
Ann Hematol ; 102(6): 1351-1361, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37121914

RESUMEN

Vitamin D, besides its classical effect on mineral homeostasis and bone remodeling, can also modulate apoptosis. A special form of apoptosis termed eryptosis appears in erythrocytes. Eryptosis is characterized by cell shrinkage, membrane blebbing, and cell membrane phospholipid disorganization and associated with diseases such as sepsis, malaria or iron deficiency, and impaired microcirculation. To our knowledge, this is the first study that linked vitamin D with eryptosis in humans. This exploratory cross-sectional trial investigated the association between the vitamin D status assessed by the concentration of plasma 25-hydroxyvitamin D (25(OH)D) and eryptosis. Plasma 25(OH)D was analyzed by LC-MS/MS, and eryptosis was estimated from annexin V-FITC-binding erythrocytes by FACS analysis in 2074 blood samples from participants of the German National Cohort Study. We observed a weak but clear correlation between low vitamin D status and increased eryptosis (r = - 0.15; 95% CI [- 0.19, - 0.10]). There were no differences in plasma concentrations of 25(OH)D and eryptosis between male and female subjects. This finding raises questions of the importance of vitamin D status for eryptosis in terms of increased risk for anemia or cardiovascular events.


Asunto(s)
Eriptosis , Masculino , Humanos , Femenino , Estudios de Cohortes , Cromatografía Liquida , Estudios Transversales , Espectrometría de Masas en Tándem , Eritrocitos/metabolismo , Vitamina D , Calcio/metabolismo , Fosfatidilserinas/metabolismo
3.
Front Nutr ; 9: 948264, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35958252

RESUMEN

Tachysterol2 (T2) is a photoisomer of the previtamin D2 found in UV-B-irradiated foods such as mushrooms or baker's yeast. Due to its structural similarity to vitamin D, we hypothesized that T2 can affect vitamin D metabolism and in turn, fibroblast growth factor 23 (FGF23), a bone-derived phosphaturic hormone that is transcriptionally regulated by the vitamin D receptor (VDR). Initially, a mouse study was conducted to investigate the bioavailability of T2 and its impact on vitamin D metabolism and Fgf23 expression. UMR106 and IDG-SW3 bone cell lines were used to elucidate the effect of T2 on FGF23 synthesis and the corresponding mechanisms. LC-MS/MS analysis found high concentrations of T2 in tissues and plasma of mice fed 4 vs. 0 mg/kg T2 for 2 weeks, accompanied by a significant decrease in plasma 1,25(OH)2D and increased renal Cyp24a1 mRNA abundance. The Fgf23 mRNA abundance in bones of mice fed T2 was moderately higher than that in control mice. The expression of Fgf23 strongly increased in UMR106 cells treated with T2. After Vdr silencing, the T2 effect on Fgf23 diminished. This effect is presumably mediated by single-hydroxylated T2-derivatives, since siRNA-mediated silencing of Cyp27a1, but not Cyp27b1, resulted in a marked reduction in T2-induced Fgf23 gene expression. To conclude, T2 is a potent regulator of Fgf23 synthesis in bone and activates Vdr. This effect depends, at least in part, on the action of Cyp27a1. The potential of oral T2 to modulate vitamin D metabolism and FGF23 synthesis raises questions about the safety of UV-B-treated foods.

4.
Genome Med ; 14(1): 30, 2022 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-35287713

RESUMEN

BACKGROUND: The gut microbiota has been suggested to play a significant role in the development of overweight and obesity. However, the effects of calorie restriction on gut microbiota of overweight and obese adults, especially over longer durations, are largely unexplored. METHODS: Here, we longitudinally analyzed the effects of intermittent calorie restriction (ICR) operationalized as the 5:2 diet versus continuous calorie restriction (CCR) on fecal microbiota of 147 overweight or obese adults in a 50-week parallel-arm randomized controlled trial, the HELENA Trial. The primary outcome of the trial was the differential effects of ICR versus CCR on gene expression in subcutaneous adipose tissue. Changes in the gut microbiome, which are the focus of this publication, were defined as exploratory endpoint of the trial. The trial comprised a 12-week intervention period, a 12-week maintenance period, and a final follow-up period of 26 weeks. RESULTS: Both diets resulted in ~5% weight loss. However, except for Lactobacillales being enriched after ICR, post-intervention microbiome composition did not significantly differ between groups. Overall weight loss was associated with significant metabolic improvements, but not with changes in the gut microbiome. Nonetheless, the abundance of the Dorea genus at baseline was moderately predictive of subsequent weight loss (AUROC of 0.74 for distinguishing the highest versus lowest weight loss quartiles). Despite the lack of consistent intervention effects on microbiome composition, significant study group-independent co-variation between gut bacterial families and metabolic biomarkers, anthropometric measures, and dietary composition was detectable. Our analysis in particular revealed associations between insulin sensitivity (HOMA-IR) and Akkermansiaceae, Christensenellaceae, and Tanerellaceae. It also suggests the possibility of a beneficial modulation of the latter two intestinal taxa by a diet high in vegetables and fiber, and low in processed meat. CONCLUSIONS: Overall, our results suggest that the gut microbiome remains stable and highly individual-specific under dietary calorie restriction. TRIAL REGISTRATION: The trial, including the present microbiome component, was prospectively registered at ClinicalTrials.gov NCT02449148 on May 20, 2015.


Asunto(s)
Microbioma Gastrointestinal , Adulto , Restricción Calórica/métodos , Humanos , Obesidad/metabolismo , Obesidad/terapia , Sobrepeso/metabolismo , Pérdida de Peso
5.
Case Rep Dermatol ; 13(1): 202-208, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34703428

RESUMEN

For more than 3 decades, extracorporeal shock wave therapy (ESWT) has been clinically implemented in urologic and orthopaedic indications. Here, we present the case of a patient with envenomation from a highly toxic jellyfish-like siphonophore (Physalia physalis) with a toxic contact dermatitis resulting in chronic eruptive skin lesions. The skin lesions on the dorsal right hand lasted more than 16 weeks and were refractive to local cortisone treatment. They finally healed after 8 applications of low-energy planar/defocused ESWT over 4 weeks. In detail, the clinical course, ESWT specifications and the possible mechanisms of ESWT in the light of the current literature are discussed. Our case indicates that ESWT is an underestimated, promising non-invasive, non-immunosuppressive treatment for chronic eruptive skin lesions after jellyfish or related toxin envenomations.

6.
Int J Food Sci Nutr ; 72(2): 160-173, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32498647

RESUMEN

Propionate has antimicrobial activity and is suggested to influence lipid metabolism. Here, we investigated the effect of propionate on lipid metabolism and the gut microbiome in fructose-fed mice as a model of diet-induced steatosis and gut dysbiosis. Therefore, 48 male wild-type mice were fed isoenergetic diets with either 0% fructose (F-) or 40% fructose (F+) that contained 0% propionate (P-) or 1% propionate (P+) for 7 weeks. Mice that received the F+ diets developed fatty livers, had fewer small intestinal proteobacteria and colonic actinobacteria and were characterised by changes in bacterial genera (e.g., Allobaculum, Lachnospiraceae, and Escherichia). Interestingly, mice fed the F+ diets had higher levels of propionate and butyrate in the circulation than mice fed the F- diets (p < 0.05). Treatment with propionate influenced neither hepatic or plasma lipids nor levels of circulating SCFAs. With the exception of Verrucomicrobia, other bacterial phyla were not affected by propionate.


Asunto(s)
Ácidos Grasos Volátiles/sangre , Fructosa/efectos adversos , Microbioma Gastrointestinal , Metabolismo de los Lípidos , Propionatos/administración & dosificación , Animales , Bacterias/clasificación , Disbiosis , Hígado Graso , Lípidos/sangre , Masculino , Ratones , Ratones Endogámicos C57BL
7.
J Insect Physiol ; 127: 104115, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32976817

RESUMEN

Insects, due to their small size, have limited energy storage space, but they also have high metabolic rate, so their hemolymph sugars are incredibly dynamic and play a number of important physiological functional roles in maintaining energetic homeostasis. In contrast to vertebrates, trehalose is generally the primary sugar found in insect hemolymph, which is followed by glucose and fructose. Many analytical chemistry methods exist to measure sugars, yet a direct comparison of methods that can measure all three simultaneously, and trehalose in particular, from low sample volumes, are sparse. Using the honey bee as a model, we directly compare the leading current methods of using High Performance Liquid Chromatography (HPLC) with an evaporative light-scattering detector and Gas Chromatography coupled with Mass Spectrometry (GC-MS) to determine which method would be better for measuring trehalose, glucose, and fructose in terms of reproducibility, accuracy, and sensitivity. Furthermore, we injected the enzyme inhibitors trehalozin (a trehalase inhibitor) and sorbose (a trehalase p-synthase inhibitor) to manipulate the trehalose levels in honey bee foragers as a proof of concept that this sugar can be altered independently of hemolymph glucose and fructose levels. Overall the HPLC method was less reproducible for measuring fructose and glucose, and it also had lower sensitivity for measuring trehalose. Consequently, significant differences in trehalose levels within the forager class were only detected with the GC-MS and not the HPLC method. Lastly, using the GC-MS method in the follow up study we found that trehalozin and sorbose causes a significant increase and decrease of trehalose levels respectively, in forager honey bees, independent of the glucose and fructose levels, ten minutes after injection. Taken together, these methods will provide useful tools for future studies exploring the many different physiological functional roles that trehalose can play in maintaining insect energetic homeostasis.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Disacáridos/administración & dosificación , Cromatografía de Gases y Espectrometría de Masas/métodos , Hemolinfa/química , Sorbosa/metabolismo , Trehalosa/metabolismo , Factores de Edad , Animales , Abejas , Disacáridos/farmacología , Privación de Alimentos/fisiología , Hemolinfa/metabolismo , Sorbosa/administración & dosificación , Azúcares/metabolismo , Trehalosa/administración & dosificación , Trehalosa/antagonistas & inhibidores
8.
Nutrients ; 12(8)2020 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-32751170

RESUMEN

Plant proteins have become increasingly important for ecological reasons. Rapeseed is a novel source of plant proteins with high biological value, but its metabolic impact in humans is largely unknown. A randomized, controlled intervention study including 20 healthy subjects was conducted in a crossover design. All participants received a test meal without additional protein or with 28 g of rapeseed protein isolate or soy protein isolate (control). Venous blood samples were collected over a 360-min period to analyze metabolites; satiety was assessed using a visual analog scale. Postprandial levels of lipids, urea, and amino acids increased following the intake of both protein isolates. The postprandial insulin response was lower after consumption of the rapeseed protein than after intake of the soy protein (p < 0.05), whereas the postmeal responses of glucose, lipids, interleukin-6, minerals, and urea were comparable between the two protein isolates. Interestingly, the rapeseed protein exerted stronger effects on postprandial satiety than the soy protein (p < 0.05). The postmeal metabolism following rapeseed protein intake is comparable with that of soy protein. The favorable effect of rapeseed protein on postprandial insulin and satiety makes it a valuable plant protein for human nutrition.


Asunto(s)
Brassica napus , Proteínas de Vegetales Comestibles/farmacología , Periodo Posprandial/efectos de los fármacos , Saciedad/efectos de los fármacos , Adolescente , Adulto , Aminoácidos/sangre , Glucemia/metabolismo , Estudios Cruzados , Método Doble Ciego , Femenino , Voluntarios Sanos , Humanos , Insulina/sangre , Lípidos/sangre , Masculino , Persona de Mediana Edad , Proteínas de Soja/farmacología , Urea/sangre , Adulto Joven
9.
Pflugers Arch ; 472(4): 503-511, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32189072

RESUMEN

Bone cells secrete fibroblast growth factor 23 (FGF23), a hormone that inhibits the synthesis of active vitamin D (1,25(OH)2D3) and induces phosphate excretion in the kidney. In addition, it exerts paracrine effects on other cells including hepatocytes, cardiomyocytes, and immune cells. The production of FGF23 is controlled by different factors including parathyroid hormone, 1,25(OH)2D3, alimentary phosphate, insulin, inflammation, and AMP-dependent kinase (AMPK) regulation of store-operated Ca2+ entry (SOCE). Peroxisome proliferator-activated receptor α (PPARα) is a transcription factor with anti-inflammatory properties regulating lipid metabolism. Fibrates, PPARα agonists, are used in the treatment of dyslipidemia and activate AMPK. Here, we tested whether PPARα is a regulator of FGF23. Fgf23 gene expression was analyzed in UMR106 rat osteoblast-like cells by qRT-PCR, AMPK phosphorylation by Western blotting, and SOCE assessed by fluorescence optics. PPARα agonists fenofibrate and WY-14643 suppressed, whereas PPARα antagonist GW6471 and siRNA-mediated knockdown of PPARα induced Fgf23 gene expression. Fenofibrate induced AMPK activity in UMR106 cells and lowered SOCE. AMPK inhibitor compound C abrogated the PPARα effect on FGF23 in large part. Silencing of Orai-1 resulted in failure of PPARα to significantly influence Fgf23 expression. Taken together, PPARα is a potent regulator of FGF23. PPARα agonists down-regulate FGF23 formation at least in part through AMPK-mediated suppression of SOCE.


Asunto(s)
Factores de Crecimiento de Fibroblastos , FN-kappa B/metabolismo , Osteoblastos/efectos de los fármacos , PPAR alfa/metabolismo , Animales , Línea Celular Tumoral , Regulación hacia Abajo , Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/metabolismo , Factores de Crecimiento de Fibroblastos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , FN-kappa B/efectos de los fármacos , Osteoblastos/metabolismo , PPAR alfa/genética , PPAR alfa/farmacología , Fosfatos/metabolismo , Ratas
10.
Cell ; 180(6): 1067-1080.e16, 2020 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-32160527

RESUMEN

Short-chain fatty acids are processed from indigestible dietary fibers by gut bacteria and have immunomodulatory properties. Here, we investigate propionic acid (PA) in multiple sclerosis (MS), an autoimmune and neurodegenerative disease. Serum and feces of subjects with MS exhibited significantly reduced PA amounts compared with controls, particularly after the first relapse. In a proof-of-concept study, we supplemented PA to therapy-naive MS patients and as an add-on to MS immunotherapy. After 2 weeks of PA intake, we observed a significant and sustained increase of functionally competent regulatory T (Treg) cells, whereas Th1 and Th17 cells decreased significantly. Post-hoc analyses revealed a reduced annual relapse rate, disability stabilization, and reduced brain atrophy after 3 years of PA intake. Functional microbiome analysis revealed increased expression of Treg-cell-inducing genes in the intestine after PA intake. Furthermore, PA normalized Treg cell mitochondrial function and morphology in MS. Our findings suggest that PA can serve as a potent immunomodulatory supplement to MS drugs.


Asunto(s)
Esclerosis Múltiple/metabolismo , Propionatos/inmunología , Propionatos/metabolismo , Adulto , Anciano , Progresión de la Enfermedad , Heces/química , Heces/microbiología , Femenino , Humanos , Inmunomodulación/fisiología , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/inmunología , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/terapia , Propionatos/uso terapéutico , Linfocitos T Reguladores/inmunología , Células Th17/inmunología
11.
Nutrients ; 12(2)2020 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-32053988

RESUMEN

Gut microbial-derived short-chain fatty acids (SCFAs) may regulate energy homeostasis and exert anti-carcinogenic, immunomodulatory and anti-inflammatory effects. Smaller trials indicate that dietary weight loss may lead to decreased SCFA production, but findings have been inconclusive. SCFA concentrations were measured by HPLC-MS/MS in plasma samples of 150 overweight or obese adults in a trial initially designed to evaluate the metabolic effects of intermittent (ICR) versus continuous (CCR) calorie restriction (NCT02449148). For the present post hoc analyses, participants were classified by quartiles of weight loss, irrespective of the dietary intervention. Linear mixed models were used to analyze weight-loss-induced changes in SCFA concentrations after 12, 24 and 50 weeks. There were no differential changes in SCFA levels across the initial study arms (ICR versus CCR versus control) after 12 weeks, but acetate concentrations significantly decreased with overall weight loss (mean log-relative change of -0.7 ± 1.8 in the lowest quartile versus. -7.6 ± 2 in the highest, p = 0.026). Concentrations of propionate, butyrate and other SCFAs did not change throughout the study. Our results show that weight-loss, achieved through calorie restriction, may lead to smaller initial decreases in plasma acetate, while plasma SCFAs generally remain remarkably stable over time.


Asunto(s)
Dieta Reductora , Ácidos Grasos Volátiles/sangre , Fenómenos Fisiológicos de la Nutrición/fisiología , Obesidad/sangre , Sobrepeso/sangre , Acetatos/sangre , Adulto , Anciano , Butiratos/sangre , Restricción Calórica , Ácidos Grasos Volátiles/fisiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Propionatos/sangre , Factores de Tiempo
12.
J Steroid Biochem Mol Biol ; 197: 105504, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31682937

RESUMEN

For a long time, orally ingested vitamin D was assumed to enter the body exclusively via simple passive diffusion. Recent data from in vitro experiments have described Niemann-Pick C1-like protein 1 (Npc1l1) as an important sterol transporter for vitamin D absorption. However, short-term applications of ezetimibe, which inhibits Npc1l1, were not associated with reduced vitamin D uptake in animals and humans. The current study aimed to elucidate the effect of long-term inhibition of Npc1l1 by ezetimibe on the uptake and storage of orally administered triple deuterated vitamin D3 (vitamin D3-d3). Therefore, 30 male wild-type mice were randomly assigned into three groups and received diets with 25 µg/kg of vitamin D3-d3 that contained 0 (control group), 50 or 100 mg/kg ezetimibe for six weeks. Mice fed diets with 50 or 100 mg/kg ezetimibe had lower circulating levels of cholesterol than control mice (-12 %, -15 %, P < 0.01). In contrast, the concentrations of 7-dehydrocholesterol in serum (P < 0.001) and liver (P < 0.05) were higher in mice treated with ezetimibe than in control mice, indicating an increased sterol synthesis to compensate for cholesterol reduction. Long-term application of ezetimibe significantly reduced the concentrations of vitamin D3-d3 in the serum and tissues of mice. The magnitude of vitamin D3 reduction was comparable between the two ezetimibe groups. In comparison to the control group, mice treated with ezetimibe had lower concentrations of deuterated vitamin D3 compared with the control group in serum (62 %, P < 0.001), liver (79 %, P < 0.001), kidney (54 %, P < 0.001), adipose tissues (55 %, P < 0.001) and muscle (41 %, P < 0.001). Surprisingly, the serum concentration of deuterated 25-hydroxyvitamin D3 was higher in the group fed 100 mg/kg ezetimibe than in the control group (P < 0.05). The protein expression of the vitamin D hydroxylases Cyp2r1, Cyp27a1, Cyp3a11, Cyp24a1 and Cyp2j3 in liver and Cyp27b1 and Cyp24a1 in kidney remained largely unaffected by ezetimibe. To conclude, Npc1l1 appears to be crucial for the uptake of orally ingested vitamin D because long-term inhibition of Npc1l1 by ezetimibe strongly reduced the levels of deuterium-labeled vitamin D in the body; the observed rise in deuterated 25-hydroxyvitamin D3 in serum of these mice can not be explained by the expression levels of the key enzymes involved in vitamin D hydroxylation.


Asunto(s)
Anticolesterolemiantes/farmacología , Deuterio/química , Ezetimiba/farmacología , Proteínas de Transporte de Membrana/química , Vitamina D/metabolismo , Vitaminas/metabolismo , Animales , Calcifediol/sangre , Colesterol/metabolismo , Hidroxilación , Masculino , Proteínas de Transporte de Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Oxigenasas de Función Mixta/metabolismo , Hormona Paratiroidea/sangre
13.
J Steroid Biochem Mol Biol ; 194: 105435, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31352023

RESUMEN

Factors that can modify the bioavailability of orally administered vitamin D are not yet widely known. Ergosterol is a common fungal sterol found in food which has a chemical structure comparable to that of vitamin D. This study aimed to investigate the effect of ergosterol on vitamin D metabolism. Therefore, 36 male wild type-mice were randomly subdivided into three groups (n = 12) and received a diet containing 25 µg vitamin D3 and either 0 mg (control), 2 mg or 7 mg ergosterol per kg diet for 6 weeks. To elucidate the impact of ergosterol on hepatic hydroxylation of vitamin D, human hepatoma cells (HepG2) were treated with different concentrations of ergosterol. Concentrations of vitamin D3 and 25-hydroxyvitamin D3 (25(OH)D3) in cells, livers and kidneys of mice and additionally 24,25-dihydroxyvitamin D3 (24,25(OH)2D3) in serum were quantified by LC-MS/MS. The concentration of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) in serum was analyzed by commercially-available enzyme immuno assay. The concentrations of cholesterol and triglycerides were analyzed in livers of mice by photometric assays. Analyses revealed that mice receiving 7 mg/kg ergosterol with their diet had 1.3-, 1.7- and 1.5-times higher concentrations of vitamin D3 in serum, liver and kidney, respectively, than control mice (P < 0.05), whereas no significant effects were observed in mice fed 2 mg/kg ergosterol. The hydroxylation of vitamin D remained unaffected by dietary ergosterol, since the concentration of 25-hydroxyvitamin D3 in serum and tissues and the concentrations of 1,25(OH)2D3 and 24,25(OH)2D3 in serum were not different between the three groups of mice. The lipid concentrations in liver were also not affected by dietary ergosterol. Data from the cell culture studies showed that ergosterol did not influence the conversion of vitamin D3 to 25(OH)D3. To conclude, ergosterol appears to be a modulator of vitamin D3 concentrations in the body of mice, without modulating the hydroxylation of vitamin D3 in liver.


Asunto(s)
Colecalciferol/farmacología , Ergosterol/farmacología , Vitaminas/farmacología , 24,25-Dihidroxivitamina D 3/sangre , 24,25-Dihidroxivitamina D 3/metabolismo , Animales , Calcifediol/sangre , Calcifediol/metabolismo , Colecalciferol/sangre , Colecalciferol/farmacocinética , Células Hep G2 , Humanos , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Riñón/efectos de los fármacos , Riñón/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones Endogámicos C57BL , Vitaminas/sangre , Vitaminas/farmacocinética
14.
Artículo en Inglés | MEDLINE | ID: mdl-31190093

RESUMEN

Insects have rapidly changing energy demands, so they primarily rely on hemolymph and other carbohydrates to carry out life activities. However, how gustatory responsiveness and hemolymph sugar levels coordinate with one another to maintain energetic homeostasis in insects remains largely unknown for the highly social honeybee that goes through large physiological and behavioral changes. The potential role of biogenic amines and neuropeptides in the connection between the regulation of appetite and fluctuating sugar levels in the hemolymph, due to starvation, as the bee ages, was investigated. The largest appetite increase due to the starvation treatment was within the forager age class and this corresponded with an increase in octopamine levels in the brain along with a decline in hemolymph sugar levels. Adipokinetic hormone (AKH) was found in very small quantities in the brain and there were no significant changes in response to starvation treatment. Our findings suggest that the particularly dynamic levels of hemolymph sugar levels may serve as a monitor of the forager honeybee energetic state. Therefore, there may be a pathway in forager bees via octopamine responsible for their precise precipitous regulation of appetite, but to determine cause and effect relationships further investigation is needed.


Asunto(s)
Apetito/fisiología , Abejas/fisiología , Encéfalo/metabolismo , Hemolinfa/metabolismo , Octopamina/metabolismo , Animales , Hemolinfa/química , Azúcares/metabolismo
15.
J Nutr Biochem ; 67: 149-160, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30925412

RESUMEN

Epidemiological studies revealed that dietary proteins can contribute to the modulation of the cardiovascular disease risk. Still, direct effects of dietary proteins on serum metabolites and other health-modulating factors have not been fully explored. Here, we compared the effects of dietary lupin protein with the effects of beef protein and casein on the serum metabolite profile, cardiovascular risk markers and the fecal microbiome. Pigs were fed diets containing 15% of the respective proteins for 4 weeks. A classification analysis of the serum metabolites revealed six biomarker sets of two metabolites each that discriminated between the intake of lupin protein, lean beef or casein. These biomarker sets included 1- and 3-methylhistidine, betaine, carnitine, homoarginine and methionine. The study revealed differences in the serum levels of the metabolites 1- and 3- methylhistidine, homoarginine, methionine and homocysteine, which are involved in the one-carbon cycle. However, these changes were not associated with differences in the methylation capacity or the histone methylation pattern. With the exception of serum homocysteine and homoarginine levels, other cardiovascular risk markers, such as the homeostatic model assessment index, trimethylamine-N-oxide and lipids, were not influenced by the dietary protein source. However, the composition of the fecal microorganisms was markedly changed by the dietary protein source. Lupin-protein-fed pigs exhibited more species from the phyla Bacteroidetes and Firmicutes than the other two groups. In conclusion, different dietary protein sources induce distinct serum metabolic fingerprints, have an impact on the cardiovascular risk and modulate the composition of the fecal microbiome.


Asunto(s)
Aminoácidos/análisis , Proteínas en la Dieta/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Hígado/metabolismo , Acetilación , Aminoácidos/sangre , Animales , Glucemia/metabolismo , Peso Corporal/efectos de los fármacos , Caseínas/farmacología , Heces/microbiología , Femenino , Microbioma Gastrointestinal/fisiología , Histonas/metabolismo , Lípidos/sangre , Hígado/efectos de los fármacos , Metilación , Carne Roja , S-Adenosilhomocisteína/metabolismo , S-Adenosilmetionina/metabolismo , Proteínas de Almacenamiento de Semillas/farmacología , Porcinos
16.
Kidney Int ; 94(3): 491-501, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29861059

RESUMEN

Fibroblast growth factor 23 (FGF23) is a proteohormone regulating renal phosphate transport and vitamin D metabolism as well as inducing left heart hypertrophy. FGF23-deficient mice suffer from severe tissue calcification, accelerated aging and a myriad of aging-associated diseases. Bone cells produce FGF23 upon store-operated calcium ion entry (SOCE) through the calcium selective ion channel Orai1. AMP-activated kinase (AMPK) is a powerful energy sensor helping cells survive states of energy deficiency, and AMPK down-regulates Orai1. Here we investigated the role of AMPK in FGF23 production. Fgf23 gene transcription was analyzed by qRT-PCR and SOCE by fluorescence optics in UMR106 osteoblast-like cells while the serum FGF23 concentration and phosphate metabolism were assessed in AMPKα1-knockout and wild-type mice. The AMPK activator, 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) down-regulated, whereas the AMPK inhibitor, dorsomorphin dihydrochloride (compound C) and AMPK gene silencing induced Fgf23 transcription. AICAR decreased membrane abundance of Orai1 and SOCE. SOCE inhibitors lowered Fgf23 gene expression induced by AMPK inhibition. AMPKα1-knockout mice had a higher serum FGF23 concentration compared to wild-type mice. Thus, AMPK participates in the regulation of FGF23 production in vitro and in vivo. The inhibitory effect of AMPK on FGF23 production is at least in part mediated by Orai1-involving SOCE.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Riñón/metabolismo , Proteína ORAI1/metabolismo , Fosfatos/metabolismo , Proteínas Quinasas Activadas por AMP/antagonistas & inhibidores , Proteínas Quinasas Activadas por AMP/genética , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacología , Animales , Línea Celular Tumoral , Regulación hacia Abajo/efectos de los fármacos , Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/sangre , Riñón/efectos de los fármacos , Ratones , Ratones Noqueados , Pirazoles/farmacología , Pirimidinas/farmacología , Ratas , Eliminación Renal/efectos de los fármacos , Ribonucleótidos/farmacología , Regulación hacia Arriba/efectos de los fármacos
17.
Nutr Diabetes ; 8(1): 36, 2018 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-29807981

RESUMEN

BACKGROUND/OBJECTIVES: Bone-derived fibroblast growth factor 23 (FGF23) is a hormone that suppresses renal phosphate reabsorption and calcitriol (i.e., 1,25(OH)2D3) formation together with its co-receptor Klotho. FGF23- or Klotho-deficient mice suffer from rapid aging with multiple age-associated diseases, at least in part due to massive calcification. FGF23 is considered as a disease biomarker since elevated plasma levels are observed early in patients with acute and chronic disorders including renal, cardiovascular, inflammatory, and metabolic diseases. An energy-dense diet, which induces sequelae of the metabolic syndrome in humans and mice at least in part by enhancing pro-inflammatory TNFα formation, has recently been demonstrated to stimulate FGF23 production. METHODS: We investigated the relevance of TNFα for high-fat diet (HFD)-induced FGF23 formation in wild-type (tnf+/+) and TNFα-deficient (tnf-/-) mice. RESULTS: Within 3 weeks, HFD feeding resulted in a strong increase in the serum FGF23 level in tnf+/+ mice. Moreover, it caused low-grade inflammation as evident from a surge in hepatic Tnfα transcript levels. TNFα stimulated Fgf23 transcription in UMR106 osteoblast-like cells. Serum FGF23 was significantly lower in tnf-/- mice compared to tnf+/+ mice following HFD. Serum phosphate and calcitriol were not significantly affected by genotype or diet. CONCLUSIONS: We show that HFD feeding is a powerful stimulator of murine FGF23 production through TNFα formation.


Asunto(s)
Dieta Alta en Grasa , Factores de Crecimiento de Fibroblastos/sangre , Hígado/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Regulación hacia Arriba , Animales , Línea Celular Tumoral , Factor-23 de Crecimiento de Fibroblastos , Ratones , Ratones Noqueados , Ratas , Factor de Necrosis Tumoral alfa/genética
18.
Mol Nutr Food Res ; 62(4)2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29205876

RESUMEN

SCOPE: Several studies have proposed a role of vitamin D in adipogenesis. Here, we sought to study the impact of the vitamin D receptor (Vdr) on adipocyte size in young and old mice and the effect of maternal vitamin D deficiency on fetal adipogenesis. METHODS AND RESULTS: Histological analysis of adipose tissues shows that Vdr knockout (KO) mice have smaller adipocytes than wild-type (WT) mice. Next, we compare young and old Vdr-KO and WT mice and find no differences in adipocyte sizes between weaned Vdr-KO and WT mice. However, 1-year-old Vdr-KO mice, suffering from alopecia, have smaller-sized adipocytes than WT mice, although they consume more food. To elucidate whether vitamin D can directly impact adipocyte development at a critical stage of adipogenesis, we feed rat dams a vitamin D deficient (0 IU kg-1 ) or vitamin D adequate (1000 IU kg-1 ) diet. Neither DNA microarray analysis of the adipose tissues of the newborn rats nor the adipocyte sizes of 21-day-old offspring show significant differences between the two groups. CONCLUSION: Data indicate that vitamin D does not play a fundamental role in adipogenesis because vitamin D does not affect fetal adipogenesis. Moreover, the smaller adipocytes observed in adult Vdr-KO mice are presumably caused by an increased energy expenditure due to alopecia.


Asunto(s)
Adipogénesis , Vitamina D/fisiología , Adipocitos/patología , Animales , Metabolismo Energético , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Animales , Ratas , Ratas Sprague-Dawley , Receptores de Calcitriol/fisiología
19.
Clin Sci (Lond) ; 131(20): 2549-2560, 2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-28935809

RESUMEN

Cocoa polyphenols are thought to reduce the risk of cardiovascular diseases. Thus, cocoa-containing foods may have significant health benefits. Here, we studied the impact of chocolate liquor on vascular lesion development and plaque composition in a mouse model of atherosclerosis. Apolipoprotein E (apoE)-knockout mice were assigned to two groups and fed a Western diet that contained 250 g/kg of either chocolate liquor or a polyphenol-free isoenergetic control paste for 16 weeks. In addition to fat, protein, and fibers, the chocolate liquor contained 2 g/kg of polyphenols. Compared with the control group, mice fed the chocolate liquor had larger plaque areas in the descending aorta and aortic root, which were attributed to a higher mass of vascular smooth muscle cells (VSMCs) and collagen. Vascular lipid deposits and calcification areas did not differ between the two groups. The aortic tissue level of interleukin-6 (IL-6) mRNA was 5-fold higher in the mice fed chocolate liquor than in the control mice. Chocolate-fed mice exhibited an increased hepatic saturated to polyunsaturated fatty acid ratio than the controls. Although the chocolate liquor contained 14 µg/kg of vitamin D2, the chocolate liquor-fed mice did not have measurable 25-hydroxyvitamin D2 in the serum. These mice even showed a 25% reduction in the level of 25-hydroxyvitamin D3 compared with the control mice. Overall, present data may contribute to our understanding how chocolate constituents can impact vascular lesion development.


Asunto(s)
Aterosclerosis/terapia , Chocolate , Dieta Alta en Grasa , Placa Aterosclerótica/patología , Animales , Apolipoproteínas E/deficiencia , Apolipoproteínas E/metabolismo , Aterosclerosis/genética , Ergocalciferoles/administración & dosificación , Ergocalciferoles/farmacología , Masculino , Ratones Noqueados
20.
Sci Rep ; 7(1): 4982, 2017 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-28694529

RESUMEN

Transforming growth factor-ß (TGF-ß) is a cytokine produced by many cell types and implicated in cell growth, differentiation, apoptosis, and inflammation. It stimulates store-operated calcium entry (SOCE) through the calcium release-activated calcium (CRAC) channel Orai1/Stim1 in endometrial Ishikawa cells. Bone cells generate fibroblast growth factor (FGF) 23, which inhibits renal phosphate reabsorption and 1,25(OH)2D3 formation in concert with its co-receptor Klotho. Moreover, Klotho and FGF23 counteract aging and age-related clinical conditions. FGF23 production is dependent on Orai1-mediated SOCE and inflammation. Here, we explored a putative role of TGF-ß2 in FGF23 synthesis. To this end, UMR106 osteoblast-like cells were cultured, Fgf23 transcript levels determined by qRT-PCR, FGF23 protein measured by ELISA, and SOCE analyzed by fluorescence optics. UMR106 cells expressed TGF-ß receptors 1 and 2. TGF-ß2 enhanced SOCE and potently stimulated the production of FGF23, an effect significantly attenuated by SB431542, an inhibitor of the transforming growth factor-ß (TGF-ß) type I receptor activin receptor-like kinases ALK5, ALK4, and ALK7. Furthermore, the TGF-ß2 effect on FGF23 production was blunted by SOCE inhibitor 2-APB. We conclude that TGF-ß2 induces FGF23 production, an effect involving up-regulation of SOCE.


Asunto(s)
Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Osteoblastos/metabolismo , Factor de Crecimiento Transformador beta2/metabolismo , Animales , Benzamidas , Compuestos de Boro/farmacología , Línea Celular , Dioxoles , Factor-23 de Crecimiento de Fibroblastos , Ratones , Proteína ORAI1/metabolismo , Osteoblastos/citología , Ratas , Molécula de Interacción Estromal 1/metabolismo , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...