Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Cell Dev Biol ; 11: 1089817, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36875761

RESUMEN

Type 1 diabetes mellitus (T1DM) is an autoimmune disorder specifically targeting pancreatic islet beta cells. Despite many efforts focused on identifying new therapies able to counteract this autoimmune attack and/or stimulate beta cells regeneration, TD1M remains without effective clinical treatments providing no clear advantages over the conventional treatment with insulin. We previously postulated that both the inflammatory and immune responses and beta cell survival/regeneration must be simultaneously targeted to blunt the progression of disease. Umbilical cord-derived mesenchymal stromal cells (UC-MSC) exhibit anti-inflammatory, trophic, immunomodulatory and regenerative properties and have shown some beneficial yet controversial effects in clinical trials for T1DM. In order to clarify conflicting results, we herein dissected the cellular and molecular events derived from UC-MSC intraperitoneal administration (i.p.) in the RIP-B7.1 mouse model of experimental autoimmune diabetes. Intraperitoneal (i.p.) transplantation of heterologous mouse UC-MSC delayed the onset of diabetes in RIP-B7.1 mice. Importantly, UC-MSC i. p. transplantation led to a strong peritoneal recruitment of myeloid-derived suppressor cells (MDSC) followed by multiple T-, B- and myeloid cells immunosuppressive responses in peritoneal fluid cells, spleen, pancreatic lymph nodes and the pancreas, which displayed significantly reduced insulitis and pancreatic infiltration of T and B Cells and pro-inflammatory macrophages. Altogether, these results suggest that UC-MSC i. p. transplantation can block or delay the development of hyperglycemia through suppression of inflammation and the immune attack.

2.
Stem Cell Res ; 16(3): 568-78, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26999760

RESUMEN

Little is known about the functions of downstream regulatory element antagonist modulator (DREAM) in embryonic stem cells (ESCs). However, DREAM interacts with cAMP response element-binding protein (CREB) in a Ca(2+)-dependent manner, preventing CREB binding protein (CBP) recruitment. Furthermore, CREB and CBP are involved in maintaining ESC self-renewal and pluripotency. However, a previous knockout study revealed the protective function of DREAM depletion in brain aging degeneration and that aging is accompanied by a progressive decline in stem cells (SCs) function. Interestingly, we found that DREAM is expressed in different cell types, including human ESCs (hESCs), human adipose-derived stromal cells (hASCs), human bone marrow-derived stromal cells (hBMSCs), and human newborn foreskin fibroblasts (hFFs), and that transitory inhibition of DREAM in hESCs reduces their pluripotency, increasing differentiation. We stipulate that these changes are partly mediated by increased CREB transcriptional activity. Overall, our data indicates that DREAM acts in the regulation of hESC pluripotency and could be a target to promote or prevent differentiation in embryonic cells.


Asunto(s)
Células Madre Embrionarias Humanas/metabolismo , Proteínas de Interacción con los Canales Kv/metabolismo , Tejido Adiposo/citología , Antígenos de Superficie/metabolismo , Proteína de Unión a CREB/genética , Proteína de Unión a CREB/metabolismo , Diferenciación Celular , Células Cultivadas , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Regulación hacia Abajo , Fibroblastos/citología , Fibroblastos/metabolismo , Células Madre Embrionarias Humanas/citología , Humanos , Proteínas de Interacción con los Canales Kv/antagonistas & inhibidores , Proteínas de Interacción con los Canales Kv/genética , Proteoglicanos/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Antígenos Embrionarios Específico de Estadio/metabolismo , Células del Estroma/citología , Células del Estroma/metabolismo
3.
Cell Death Dis ; 5: e1304, 2014 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-24967966

RESUMEN

Recent studies suggested that the post-natal mesothelium retain differentiative potential of the embryonic mesothelium, which generates fibroblasts and vascular smooth muscle cells (VSMCs), in developing coelomic organs via epithelial-to-mesenchymal transition (EMT). Whether adult mesothelial cells (MCs) are able to give rise to functional VSMCs in vitro and which are the factors and mechanisms directing this process remain largely unknown. Here, we isolated adipose tissue MCs (ATMCs) from adult mice, and demonstrated that ATMCs cultured in a serum-containing media supplemented with epidermal growth factor (EGF) efficiently increased both their proliferation and EMT above levels found in only serum-containing media cultures. EGF-induced ATMCs gained phosphorylation of the EGF receptor and activated simultaneously ILK/Erk1/2, PI3K/Akt and Smad2/3-dependent pathways. Sequential subculture onto collagen-I surface efficiently improved their vasculogenic EMT towards cells featuring VSMCs (α-SMA, calponin, caldesmon, SM22α, desmin, SM-MHC, smoothelin-B and PDGFR-ß) that could actively contract in response to receptor and non-receptor-mediated vasoactive agonists. Overall, our results indentify EGF signalling as a robust vasculogenic inductive pathway for ATMCs, leading to their transdifferentiation into functional VSMC-like cells.


Asunto(s)
Tejido Adiposo/metabolismo , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Factor de Crecimiento Epidérmico/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Tejido Adiposo/citología , Animales , Antígenos de Diferenciación/metabolismo , Células Cultivadas , Femenino , Ratones , Proteínas Musculares/metabolismo , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/citología , Ratas , Ratas Wistar , Transducción de Señal/fisiología
4.
Cell Death Dis ; 4: e570, 2013 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-23559004

RESUMEN

Lineage commitment during embryonic stem cell (ESC) differentiation is controlled not only by a gamut of transcription factors but also by epigenetic events, mainly histone deacetylation and promoter DNA methylation. The DNA demethylation agent 5'-aza-2'-deoxycytidine (AzadC) has been widely described as an effective promoter of cardiomyogenic differentiation in various stem cell types. However, its toxicity and instability complicate its use. Therefore, the purpose of this study was to examine the effects of zebularine (1-(ß-D-ribofuranosyl)-1,2-dihydropyrimidin-2-1), a stable and non-toxic DNA cytosine methylation inhibitor, on mouse ESC (mESC) differentiation. Herein, we report that treating embryoid bodies, generated from mESCs, with 30 µM zebularine for 7 days led to greater cell differentiation and induced the expression of several cardiac-specific markers that were detected using reverse transcription-polymerase chain reaction (RT-PCR), real-time PCR, immunostaining and flow cytometry. Zebularine enhanced the expression of cardiac markers and the appearance of beating cells that responded to cardiac drugs, including ion channel blockers (diltiazem) and ß-adrenergic stimulators (isoproterenol). Gene promoter methylation status was assessed using methylation-specific PCR (MSP) and validated by bisulfite sequencing analysis. Global gene expression profiling using microarrays showed that zebularine-differentiated cells are distinct from control ESCs. Pathway analysis revealed an enhancement of cellular processes such as embryonic development, cardiovascular system development and function. In addition, the whole-cell proteins exhibited different profiles as analyzed by two-dimensional differential-in-gel-electrophoresis. Our results indicate that zebularine regulates mesodermal differentiation of mESCs, controls promoter methylation of crucial cardiac genes and may help to improve cardiomyogenic differentiation.


Asunto(s)
Citidina/análogos & derivados , Cuerpos Embrioides/efectos de los fármacos , Redes y Vías Metabólicas/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Animales , Biomarcadores/metabolismo , Diferenciación Celular/efectos de los fármacos , Línea Celular , Citidina/farmacología , Metilación de ADN/efectos de los fármacos , Cuerpos Embrioides/citología , Cuerpos Embrioides/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa
5.
Cell Death Differ ; 17(6): 1025-33, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20075941

RESUMEN

Exposure of mouse embryonic stem (mES) cells to high concentrations of chemical nitric oxide (NO) donors promotes differentiation, but the mechanisms involved in this process at the gene expression level are poorly defined. In this study we report that culture of mES cells in the presence of 0.25-1.0 mM diethylenetriamine nitric oxide adduct (DETA-NO) leads to downregulation of Nanog and Oct4, the two master genes involved in the control of the pluripotent state. This action of NO was also apparent in the human ES cell line, HS 181. The suppressive action of NO on Nanog gene depends on the activation of p53 repressor protein by covalent modifications, such as pSer15, pSer315, pSer392 and acetyl Lys 379. NO-induced repression of Nanog is also associated with binding of trimethylated histone H3 and pSer315 p53 to its promoter region. In addition, exposure to 0.5 mM DETA-NO induces early differentiation events of cells with acquisition of epithelial morphology and expression of markers of definitive endoderm, such as FoxA2, Gata4, Hfn1-beta and Sox 17. This phenotype was increased when cells were treated with valproic acid (VPA) for 10 days.


Asunto(s)
Células Madre Embrionarias/metabolismo , Proteínas de Homeodominio/genética , Óxido Nítrico/metabolismo , Animales , Apoptosis , Diferenciación Celular , Línea Celular , Regulación hacia Abajo , Células Madre Embrionarias/citología , Células Madre Embrionarias/efectos de los fármacos , Endodermo/citología , Histonas/metabolismo , Proteínas de Homeodominio/metabolismo , Ratones , Proteína Homeótica Nanog , Donantes de Óxido Nítrico/farmacología , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Fenotipo , Regiones Promotoras Genéticas , Procesamiento Proteico-Postraduccional , Proteína p53 Supresora de Tumor/metabolismo
6.
Cell Death Dis ; 1: e80, 2010 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-21368853

RESUMEN

Nitric oxide (NO) is an intracellular messenger in several cell systems, but its contribution to embryonic stem cell (ESC) biology has not been characterized. Exposure of ESCs to low concentrations (2-20 µM) of the NO donor diethylenetriamine NO adduct confers protection from apoptosis elicited by leukaemia inhibitory factor (LIF) withdrawal. NO blocked caspase 3 activation, PARP degradation, downregulation of the pro-apoptotic genes Casp7, Casp9, Bax and Bak1 and upregulation of the anti-apoptotic genes Bcl-2 111, Bcl-2 and Birc6. These effects were also observed in cells overexpressing eNOS. Exposure of LIF-deprived mESCs to low NO prevented the loss of expression of self-renewal genes (Oct4, Nanog and Sox2) and the SSEA marker. Moreover, NO blocked the differentiation process promoted by the absence of LIF and bFGF in mouse and human ESCs. NO treatment decreased the expression of differentiation markers, such as Brachyury, Gata6 and Gata4. Constitutive overexpression of eNOS in cells exposed to LIF deprivation maintained the expression of self-renewal markers, whereas the differentiation genes were repressed. These effects were reversed by addition of the NOS inhibitor L-NMMA. Altogether, the data suggest that low NO has a role in the regulation of ESC differentiation by delaying the entry into differentiation, arresting the loss of self-renewal markers and promoting cell survival by inhibiting apoptosis.


Asunto(s)
Células Madre Embrionarias/citología , Óxido Nítrico/metabolismo , Animales , Apoptosis , Diferenciación Celular , Supervivencia Celular , Células Madre Embrionarias/metabolismo , Proteínas de Homeodominio/metabolismo , Humanos , Factor Inhibidor de Leucemia/metabolismo , Antígeno Lewis X/metabolismo , Ratones , Óxido Nítrico Sintasa de Tipo III/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Poliaminas/farmacología , Factores de Transcripción SOXB1/metabolismo
7.
Cells Tissues Organs ; 188(1-2): 70-7, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18305378

RESUMEN

Diabetes is a chronic disease characterized by a deficit in beta cell mass and a failure of glucose homeostasis. Both circumstances result in a variety of severe complications and an overall shortened life expectancy. Thus, diabetes represents an attractive candidate for cell therapy. Reversal of diabetes can be achieved through pancreas and islet transplantation, but shortage of donor organs has prompted an intensive search for alternative sources of beta cells. This achievement has stimulated the search for appropriate stem cell sources. Both embryonic and adult stem cells have been used to generate surrogate beta cells or otherwise restore beta cell functioning. In this regard, several studies have reported the generation of insulin-secreting cells from embryonic and adult stem cells that normalized blood glucose values when transplanted into diabetic animal models. Due to beta cell complexity, insulin-producing cells generated from stem cells do not possess all beta cell attributes. This indicates the need for further development of methods for differentiation and selection of completely functional beta cells. While these problems are overcome, diabetic patients may benefit from therapeutic strategies based on autologous stem cell therapies addressing late diabetic complications. In this article, we discuss the recent progress in the generation of insulin-producing cells from embryonic and adult stem cells, together with the challenges for the clinical use of diabetes stem cell therapy.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos , Diabetes Mellitus/terapia , Células Madre/citología , Células Madre Adultas/citología , Linaje de la Célula , Complicaciones de la Diabetes/terapia , Células Madre Embrionarias/citología , Humanos , Células Secretoras de Insulina/citología , Donantes de Tejidos
8.
J Neuroimmunol ; 103(2): 180-8, 2000 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-10696913

RESUMEN

This paper shows that melatonin regulates both thymosin alpha1 and thymulin production as well as the expression of the prothymosin alpha gene. The results revealed the following facts: (a) The concentrations of thymosin alpha1 in both serum and thymus of rat showed a nyctohemeral profile with peak values late at night and basal values during the day. The concentrations of thymulin in rat serum also showed a 24-h rhythm with an increase in their values at night. This rhythmical character for thymosin alpha1, and thymulin was also found in the human serum. (b) Rats injected with melatonin during the day exhibited a significant increase in the concentrations of both peptides. Moreover, continuous light exposure on the animals at daytime and pinealectomy cause a decrease in thymosin a1 and thymulin concentrations with regards to those found in control rats. (c) Melatonin regulates the expression of the prothymosin alpha gene, analyzed by Northern blot. These results suggest that melatonin may be involved in the regulation of immune functions by increasing the thymic peptides production.


Asunto(s)
Ritmo Circadiano/fisiología , Melatonina/fisiología , Factor Tímico Circulante/metabolismo , Timosina/análogos & derivados , Timo/metabolismo , Adulto , Animales , Animales Recién Nacidos , Oscuridad , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Humanos , Luz , Masculino , Melatonina/farmacología , Fotoperiodo , Glándula Pineal/cirugía , Precursores de Proteínas/biosíntesis , Precursores de Proteínas/genética , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Timalfasina , Timosina/biosíntesis , Timosina/sangre , Timosina/genética , Timosina/metabolismo
9.
J Exp Med ; 190(11): 1595-604, 1999 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-10587350

RESUMEN

Interleukin (IL)-1beta is a pleiotropic cytokine implicated in a variety of activities, including damage of insulin-producing cells, brain injury, or neuromodulatory responses. Many of these effects are mediated by nitric oxide (NO) produced by the induction of NO synthase (iNOS) expression. We report here that IL-1beta provokes a marked repression of genes, such as fragile X mental retardation 1 (FMR1) and hypoxanthine phosphoribosyltransferase (HPRT), having a CpG island in their promoter region. This effect can be fully prevented by iNOS inhibitors and is dependent on DNA methylation. NO donors also cause FMR1 and HPRT gene silencing. NO-induced methylation of FMR1 CpG island can be reverted by demethylating agents which, in turn, produce the recovery of gene expression. The effects of IL-1beta and NO appear to be exerted through activation of DNA methyltransferase (DNA MeTase). Although exposure of the cells to NO does not increase DNA MeTase gene expression, the activity of the enzyme selectively increases when NO is applied directly on a nuclear protein extract. These findings reveal a previously unknown effect of IL-1beta and NO on gene expression, and demonstrate a novel pathway for gene silencing based on activation of DNA MeTase by NO and acute modification of CpG island methylation.


Asunto(s)
Metilación de ADN , Silenciador del Gen , Hipoxantina Fosforribosiltransferasa/genética , Interleucina-1/farmacología , Proteínas del Tejido Nervioso/genética , Óxido Nítrico/fisiología , Animales , División Celular , Metilasas de Modificación del ADN/metabolismo , Cartilla de ADN , Fosfatos de Dinucleósidos , Activación Enzimática , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Síndrome del Cromosoma X Frágil/genética , Silenciador del Gen/efectos de los fármacos , Humanos , Células Jurkat , Macrófagos , Ratones , Donantes de Óxido Nítrico/farmacología , Óxido Nítrico Sintasa/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo II , Penicilamina/análogos & derivados , Penicilamina/farmacología , Regiones Promotoras Genéticas , Proteínas de Unión al ARN/genética , Ratas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , S-Nitroso-N-Acetilpenicilamina , Células Tumorales Cultivadas , omega-N-Metilarginina/farmacología
10.
Mol Genet Metab ; 68(3): 363-70, 1999 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-10562463

RESUMEN

A rise in intracellular Ca(2+) levels has been implicated as a regulatory signal for the initiation of lymphocyte proliferation. In the present study the mechanism underlying the elevation of [Ca(2+)] induced by phenylarsine oxide [PAO] was investigated in thymocytes. This agent inhibits HIV-1 replication and also NF-kappaB-mediated activation. It has been reported that the PAO-induced Ca(2+) elevation results from an enhanced plasma membrane calcium permeability in T cells. Here, we present biochemical evidence that the PAO-induced Ca(2+) increase was independent of external Ca(2+). Consistent with these facts, when [Ca(2+)](i) was depleted by prolonged incubation of the cells in Ca(2+)-free medium, PAO addition did not lead to [Ca(2+)](i) increase. These data indicate the involvement of intracellular organelles of thymocytes as the source of Ca(2+). Moreover, evidence is presented that PAO inhibited Ca(2+)-dependent ATPase activity from thymocytes and sarcoplasmic reticulum from skeletal muscle. This inhibition was dose-dependent, with a IC(50) of about 30 microM for both preparations of enzyme. The ability of PAO to inhibit Ca(2+)-dependent ATPase represents a novel mechanism of action for this drug. Present data suggest that the PAO-dependent [Ca(2+)](i) increase could be mainly the result of inhibition of Ca(2+)-dependent ATPase. In addition, we describe also a Ca(2+)-dependence for PAO effect on tyrosine phosphorylation.


Asunto(s)
Arsenicales/farmacología , ATPasas Transportadoras de Calcio/antagonistas & inhibidores , Calcio/metabolismo , Inhibidores Enzimáticos/farmacología , Linfocitos T/metabolismo , Animales , Permeabilidad de la Membrana Celular/efectos de los fármacos , VIH-1/efectos de los fármacos , VIH-1/fisiología , Humanos , Técnicas In Vitro , Cinética , Masculino , Ratones , Microsomas/efectos de los fármacos , Microsomas/metabolismo , Músculo Esquelético/metabolismo , Orgánulos/efectos de los fármacos , Orgánulos/metabolismo , Retículo Sarcoplasmático/efectos de los fármacos , Retículo Sarcoplasmático/metabolismo , Linfocitos T/efectos de los fármacos , Replicación Viral/efectos de los fármacos
11.
J Lab Clin Med ; 131(2): 170-3, 1998 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-9488501

RESUMEN

The fragile X syndrome is the most frequent form of inherited mental retardation. This is caused by the transcriptional inactivation of the FMR1 gene. The KH domain is an evolutionarily conserved sequence motif present in many RNA-binding proteins including the fragile X mental retardation gene product. We have studied the expression of the gene in fresh leukocytes derived from patients and normal controls by using a reverse transcriptase-polymerase chain reaction (RT-PCR) protocol that amplifies the region of the FMR1 that contains the KH1 and KH2 domains and that has not been used in previous studies. As expected, normal expression was observed in control subjects and carriers, but FMR1 mRNA was absent in male patients with fragile X syndrome. This method was also proved to be useful for testing the expression of FMR1 in samples from several species and tissues. In all cases we obtained a similar and unique transcript. We suggest that RT-PCR from the KH domains could be the method of choice for studying FMR1 expression.


Asunto(s)
Proteínas del Tejido Nervioso/genética , Proteínas de Unión al ARN , Femenino , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Humanos , Masculino , Reacción en Cadena de la Polimerasa , ADN Polimerasa Dirigida por ARN , Repeticiones de Trinucleótidos
12.
J Med Genet ; 32(11): 907-8, 1995 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-8592340

RESUMEN

Fragile X syndrome is the major cause of inherited mental retardation. The molecular basis for the expression of the fragile X phenotype is the expansion of an unstable CGG repeat element which inhibits transcription of the FMR1 gene. The fragile X syndrome shows great diversity in its phenotype as well as in its cytogenetic and molecular status. We have studied, in a large fragile X family, the correlation between the molecular data and the phenotypic expression of the syndrome. We report two brothers who carry identical unmethylated premutated alleles but present different clinical phenotypes. We also suggest that reductions in allele size from one generation to another may be, as in other diseases, because of triplet amplifications, more common at the FRAXA locus than previously thought.


Asunto(s)
Fragilidad Cromosómica , Síndrome del Cromosoma X Frágil/genética , Repeticiones de Minisatélite , Proteínas del Tejido Nervioso/genética , Proteínas de Unión al ARN , Repeticiones de Trinucleótidos , Cromosoma X/genética , Alelos , Análisis Mutacional de ADN , Femenino , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Síndrome del Cromosoma X Frágil/patología , Humanos , Masculino , Metilación , Linaje , Fenotipo , Reacción en Cadena de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA