Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros











Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39313703

RESUMEN

Type 2 diabetes (T2DM) is one of the four major types of non-communicable diseases that have become a global health concern. Water kefir is a product of a brown sugar solution fermented with kefir grains which comprises around 30 microbial species in its grains. Water kefir possesses a wide range of health benefits, including anti-hyperlipidemic effects, and reduces hypertension and blood glucose levels in animal models. Reportedly, consuming water kefir containing probiotics may enhance the intestinal barrier and positively influence the composition of the intestinal microflora. The present study aimed to evaluate the regulatory effects of Lactobacillus paracasei isolated from Malaysian water kefir grains (MWKG) on the alterations of intestinal barrier and gut microbiota in diabetic mice via histopathological analysis of the distal colon and 16S rRNA gene sequencing on fecal microbiome. Results indicated that the administration of isolated Lactobacillus paracasei from MWKG to diabetic mice ameliorated the dominant probiotic phyla in the gut microbiota. Results showed that lower dose (LD) and high dose (HD) treatments of the isolated Lactobacillus paracasei could significantly reduce inflammatory cell infiltration in the distal colon of diabetic mice. The treatments revealed a significant decrease in the relative abundance of Firmicutes in the gut, 0.27 ± 0.06% for LD and 0.34 ± 0.04% for HD, compared to untreated (UN) diabetic mice, 0.40 ± 0.02%. These results suggest that L. paracasei isolated from MWKG could serve as a potential dietary supplement against intestinal inflammation and modify gut microbiota composition in patients with T2DM.

2.
J Basic Microbiol ; : e2400312, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39304989

RESUMEN

The globally vital oil palm, a major oil producer, confronts productivity challenges due to Ganoderma boninense (Gb), causing output decline. Chemical control efforts have proven ineffective, prompting exploration of microbial-based biocontrol. While single fungal biocontrol research exists, the impact of employing multiple biocontrols concurrently to combat Ganoderma and enhance oil palm growth remains uncharted. This study examined four soil-derived fungal isolates for their ability to antagonize Gb PER71 in vitro. Molecular identification categorized them as Talaromyces spp. and Penicillium sp. Moreover, all isolates were revealed to have at least three plant growth-promoting (PGP) traits and were shown to have phosphoric hydrolase, ester hydrolase, peptide hydrolase, and glycosidase activities which are essential for plant growth. Furthermore, the synergistic evaluation of fungal isolates was tested against Gb PER71. One out of six combinations of fungal isolates showed a synergistic effect in vitro, and two showed a synergistic effect in planta. The application of single and combined fungal isolates tested in planta also suppressed Gb PER71 and enhanced oil palm growth compared to control groups. The findings indicate the promising potential of these isolates as biocontrol agents (BCAs) and bioformulations against Gb in oil palm cultivation.

3.
J Plant Physiol ; 289: 154080, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37699261

RESUMEN

Modification of lipid composition in the mesocarp tissue of oil palm involves genetic manipulation of multiple genes. More than one mesocarp-preferential promoter is necessary for the expression of individual transgenes in the same plant to obviate transcriptional gene silencing. This study aimed to identify genes that are preferentially expressed in the mesocarp tissue and characterize selected candidate mesocarp-preferential promoters. Ten transcripts that were preferentially expressed in the mesocarp tissue were identified from the analysis of 82 transcriptome datasets of 12 different oil palm tissues. The expression of two candidate genes, MSP-C1 and MSP-C6, was verified to be preferentially expressed in the mesocarp tissues and shown to have a low expression level in non-mesocarp tissues by reverse transcription quantitative real-time PCR (RT-qPCR). MSP-C6 promoter fragments of different lengths were transformed into tomato plants for further characterization. Both unripe and ripe fruits of transgenic tomato plants transformed with a construct harboring the MSP-C6-F1 (2014 bp) promoter were shown to have high beta-glucuronidase (GUS) activities. The findings of this study suggest the potential applications of the MSP-C6 promoter as a molecular tool for genetic engineering of novel traits in fruit crops.


Asunto(s)
Frutas , Solanum lycopersicum , Regiones Promotoras Genéticas/genética , Transgenes , Frutas/genética , Frutas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Ingeniería Genética , Regulación de la Expresión Génica de las Plantas/genética , Glucuronidasa/genética , Glucuronidasa/metabolismo
4.
Plant Dis ; 2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37709725

RESUMEN

Coconut (Cocos nucifera) is a high economic value cash crop in Malaysia. In December 2021, irregular spots with dotted rust-like appearance were observed mainly on the tip of the leaves of MATAG variety coconut seedlings at the nursery in Perak state. More than 90% of the coconut seedlings surveyed were infected with leaf spot symptoms. These symptoms could bring huge economic losses due to the downgrade value of the seedlings. 15 symptomatic leaves were obtained from the nursery, 10 mm2 of cut leaves were disinfected with 10% sodium hypochlorite for 10 minutes and rinsed with sterile distilled water before plated on potato dextrose agar (PDA). A total of 4 single-spore isolates were obtained and were observed morphologically. The isolates had white cotton-like appearance with undulate edge. Black acervuli were seen after 7 days of incubation at 26 °C. The conidia were fusiform and contained five cells with four septate and three versicolor cells in between the apical and basal cell. The conidia were 17.2 µm long and 5.9 µm wide (n=30). Conidia consisted of two to three apical appendages and one basal appendage. These morphological characters were consistent with the original description of Neopestalotiopsis clavispora (Santos et al., 2019; Abbas et al., 2022). Species identification was done by amplifying internal transcribed spacer (ITS) region using primers ITS 4 and ITS 5 (White et al., 1990) and beta-tubulin (TUB2) using primers Bt2a and Bt2b (Glass & Donaldson et al., 1995) of the representative isolate LKR1, then sequenced. The 488 bp ITS and 409 bp TUB2 sequences were deposited in GenBank under the accession numbers ON844193 and OP004810, respectively. Isolate LKR1 shares 99.8% identity with the ITS sequence (MH860736.1) of the reference pathogenic N. clavispora strain CBS:447.73 and 100% identity with the TUB2 sequence (KM199443.1) of the reference pathogenic N. clavispora strain CBS 447.73. The phylogenetic analysis confirmed that the isolate LKR1 belonged to N. clavispora when a supported clade is formed with 98% and 94% bootstrap support for ITS and TUB2 respectively with other related N. clavispora. Pathogenicity test was conducted by using five replicates of 8 month old seedlings, they were incubated under greenhouse condition and were watered daily. The leaves of the seedlings were injured with sterile needles and were sprayed with conidial suspension (1 x 10^6 conidia/ml). The control plants were also injured but sprayed with sterile distilled water. After a month, signature symptoms of spots on the leaves appear but none on the control seedling. N. clavispora was successfully re-isolated only from the inoculated symptomatic leaves and identified morphologically. No fungus was re-isolated from the control seedlings. The result was consistent even after repeating the test one more time. N. clavispora has been reported causing leaf spot on Macadamia integrifolia (Santos et al., 2019), Phoenix dactylifera L. (Basavand et al., 2020) and Musa acuminata (Qi et al., 2022). N. clavispora has also been reported causing rust-like appearance of leaves on strawberry (Fragaria × ananassa Duch.) (Obregón et al., 2018). To our knowledge, this is the first report of N. clavispora causing leaf spot disease on coconut seedlings in Malaysia. Through the identification of N. clavispora as the causal agent of leaf spot on coconut, this can help coconut growers to tackle the disease problem earlier thus, preventing the disease from spreading until the adult phase.

5.
Artículo en Inglés | MEDLINE | ID: mdl-37755545

RESUMEN

The prevalence of type 2 diabetes mellitus (T2DM) is alarming because it is always linked to the increase in chronic diseases, mortality, and socioeconomic burden. Water kefir has a wide range of functional and probiotic characteristics attributed to the microorganisms present in the kefir grains. The present study aims to evaluate the in vivo anti-diabetic potential of the isolated Lactobacillus paracasei from Malaysian water kefir grains (MWKG) which was reported to have excellent probiotic properties and high antioxidant activities as reported previously. High-fat diet/streptozotocin (HFD/STZ) induction was used to obtain a T2DM model followed by treatment with the isolated L. paracasei from MWKG. The levels of glucose, insulin, and in vivo liver antioxidants were quantified after 14 weeks. Gene expression analysis of the liver was also carried out using microarray analysis, and several genes were selected for validation using quantitative real-time PCR. Insulin tolerance test demonstrated that the L. paracasei isolated from the MWKG alleviated T2DM by improving the area under the curve of the insulin tolerance test whereby low-dose and high-dose concentrations treated groups showed 2424.50 ± 437.02 mmol/L·min and 2017.50 ± 347.09 mmol/L·min, respectively, compared to untreated diabetic mice which was 3884.50 ± 39.36 mmol/L·min. Additionally, treatment with the isolated L. paracasei from MWKG regulated the expression of several genes related to glucose homeostasis and lipid metabolism in diabetic mice. These results suggested that the isolated L. paracasei from MWKG could be a potential dietary supplement for T2DM.

6.
World J Microbiol Biotechnol ; 39(5): 123, 2023 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-36934342

RESUMEN

In today's fast-shifting climate change scenario, crops are exposed to environmental pressures, abiotic and biotic stress. Hence, these will affect the production of agricultural products and give rise to a worldwide economic crisis. The increase in world population has exacerbated the situation with increasing food demand. The use of chemical agents is no longer recommended due to adverse effects towards the environment and health. Biocontrol agents (BCAs) and biostimulants, are feasible options for dealing with yield losses induced by plant stresses, which are becoming more intense due to climate change. BCAs and biostimulants have been recommended due to their dual action in reducing both stresses simultaneously. Although protection against biotic stresses falls outside the generally accepted definition of biostimulant, some microbial and non-microbial biostimulants possess the biocontrol function, which helps reduce biotic pressure on crops. The application of synergisms using BCAs and biostimulants to control crop stresses is rarely explored. Currently, a combined application using both agents offer a great alternative to increase the yield and growth of crops while managing stresses. This article provides an overview of crop stresses and plant stress responses, a general knowledge on synergism, mathematical modelling used for synergy evaluation and type of in vitro and in vivo synergy testing, as well as the application of synergism using BCAs and biostimulants in reducing crop stresses. This review will facilitate an understanding of the combined effect of both agents on improving crop yield and growth and reducing stress while also providing an eco-friendly alternative to agroecosystems.


Asunto(s)
Agricultura , Estrés Fisiológico , Productos Agrícolas , Cambio Climático
7.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-988516

RESUMEN

Aims@#This study was designed to examine the enzyme activity of selected virulent isolates of Ganoderma boninense against oil palm. In a separate in vitro assessment, the effect of macronutrients on the mycelial growth of four selected Ganoderma spp. was also tested.@*Methodology and results@#The study involved a comparison of ligninolytic enzymes; lignin peroxidase (LiP), manganese peroxidase (MnP) and laccase (Lac) profiling of eight isolates of G. boninense, categorized into three levels of aggressiveness, with two control isolates (G. boninense PER71 and G. tornatum NPG1) using solid-state fermentation (SSF). The Principal Component Analysis (PCA) revealed that the isolates had a significant production of ligninolytic enzymes on day 80. The most aggressive isolate, ET61 had the highest Lac production. As for the macronutrient test, mycelial growth for all the Ganoderma spp. was highly affected by potassium (K).@*Conclusion, significance and impact of study@#The findings of this study elucidated the characteristics of G. boninense in relation to enzyme production for the degradation of oil palm lignin and the identification of essential nutrients involved in the survival and growth of Ganoderma spp. The study provides vital information on the pathogenic characteristics of G. boninense isolates involved in biomass degradation along with the role of nutrient on the growth of Ganoderma spp. that may influence basal stem rot (BSR) management in the field.


Asunto(s)
Enzimas , Ganoderma , Aceite de Palma
8.
BMC Genomics ; 23(1): 164, 2022 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-35219299

RESUMEN

BACKGROUND: The ability of plants to withstand and thrive in an adverse environment is crucial to ensure their survivability and yield performance. The WRKY transcription factors (TFs) have crucial roles in plant growth, development and stress response, particularly drought stress. In oil palm, drought is recognized as one of the major yield limiting factors. However, the roles of WRKY TFs in the drought response of oil palm is unclear. RESULTS: Herein, we studied the transcriptome of drought treated oil palm leaf and identified 40 differentially expressed genes (DEGs) of WRKY TFs, of which 32 DEGs were upregulated and 8 DEGs were downregulated in response to drought stress in oil palm. They were categorized into Groups I to IV based on the numbers of WRKY domain and the structural difference in the zinc finger domain. Multiple stress- and hormone-responsive cis-regulatory elements were detected in the drought responsive oil palm EgWRKY (Dro-EgWRKY) genes. Fourteen of the 15 selected oil palm WRKY (EgWRKY) genes demonstrated a tissue-specific expression profile except for EgWRKY28 (Group I), which was expressed in all tissues tested. The expression levels of 15 candidate EgWRKYs were upregulated upon salinity and heat treatments, while several genes were also inducible by abscisic acid, methyl jasmonate, salicylic acid and hydrogen peroxide treatments. Members of the Group III WRKY TFs including EgWRKY07, 26, 40, 52, 59, 73 and 81 displayed multiple roles in drought- and salinity-response under the modulation of phytohormones. CONCLUSIONS: EgWRKY TFs of oil palm are involved in phytohormones and abiotic stress responses including drought, salinity and heat. EgWRKY07, 26, 59 and 81 from Group III maybe important regulators in modulating responses of different abiotic stresses. Further functional analysis is required to understand the underlying mechanism of WRKY TFs in the regulatory network of drought stress.


Asunto(s)
Arecaceae , Sequías , Regulación de la Expresión Génica de las Plantas , Hormonas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
Carbohydr Polym ; 277: 118764, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34893214

RESUMEN

Sulphated polysaccharides (SPs) are carbohydrate macromolecules with sulphate esters that are found among marine algae, seagrasses, mangroves and some terrestrial plants. The sulphate concentration in the ocean (28 mM) since ancient time could have driven the production of SPs in marine algae. SPs have a gelatinous property that can protect marine algae against desiccation and salinity stress. Agar and carrageenan are red algal SPs that are widely used as gelling agents in the food and pharmaceutical industries. The information on the SPs from freshwater and land plants are limited. In this review, we reviewed the taxonomic distribution and composition of SPs in different photosynthetic lineages, and explored the association of SP production in these diversified photosynthetic organisms with evolution history and environmental stresses. We also reviewed the genes/proteins involved in SP biosynthesis. Insights into SP biosynthetic machinery may shed light on the evolution that accompanied adaptation to life on earth.


Asunto(s)
Polisacáridos/biosíntesis , Sulfatos/metabolismo , Embryophyta/química , Embryophyta/metabolismo , Agua Dulce/química , Procesos Fotoquímicos , Polisacáridos/química , Sulfatos/química
10.
Sci Rep ; 11(1): 16330, 2021 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-34381084

RESUMEN

Basal stem rot (BSR) of oil palm is a disastrous disease caused by a white-rot fungus Ganoderma boninense Pat. Non-ribosomal peptides (NRPs) synthesized by non-ribosomal peptide synthetases (NRPSs) are a group of secondary metabolites that act as fungal virulent factors during pathogenesis in the host. In this study, we aimed to isolate NRPS gene of G. boninense strain UPMGB001 and investigate the role of this gene during G. boninense-oil palm interaction. The isolated NRPS DNA fragment of 8322 bp was used to predict the putative peptide sequence of different domains and showed similarity with G. sinense (85%) at conserved motifs of three main NRPS domains. Phylogenetic analysis of NRPS peptide sequences demonstrated that NRPS of G. boninense belongs to the type VI siderophore family. The roots of 6-month-old oil palm seedlings were artificially inoculated for studying NRPS gene expression and disease severity in the greenhouse. The correlation between high disease severity (50%) and high expression (67-fold) of G. boninense NRPS gene at 4 months after inoculation and above indicated that this gene played a significant role in the advancement of BSR disease. Overall, these findings increase our knowledge on the gene structure of NRPS in G. boninense and its involvement in BSR pathogenesis as an effector gene.


Asunto(s)
Ganoderma/genética , Ganoderma/metabolismo , Aceite de Palma/metabolismo , Péptido Sintasas/genética , Péptido Sintasas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , ADN de Plantas/genética , Genes de Plantas/genética , Filogenia , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantones/genética , Plantones/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA