Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mech Dev ; 105(1-2): 175-80, 2001 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-11429294

RESUMEN

Cell interactions involving Notch signaling are required for the demarcation of tissue boundaries in both invertebrate and vertebrate development. Members of the Fringe gene family encode beta-1,3 N-acetyl-glucosaminyltransferases that function to refine the spatial localization of Notch-receptor signaling to tissue boundaries. In this paper we describe the isolation and characterization of the zebrafish (Danio rerio) homologue of the lunatic fringe gene (lfng). Zebrafish lfng is generally expressed in equivalent structures to those reported for the homologous chick and mouse genes. These sites include expression along the A-P axis of the neural tube, within the lateral plate mesoderm, in the presomitic mesoderm and the somites and in specific rhombomeres of the hindbrain; however, within these general expression domains species-specific differences in lfng expression exist. In mouse, Lfng is expressed in odd-numbered rhombomeres, whereas in zebrafish, expression occurs in even-numbered rhombomeres. In contrast to reports in both mouse and chicken embryos showing a kinematic cyclical expression of Lfng mRNA in the presomitic paraxial mesoderm, we find no evidence for a cyclic pattern of expression for the zebrafish lfng gene; instead, the zebrafish lfng is expressed in two static stripes within the presomitic mesoderm. Nevertheless, in zebrafish mutants affecting the correct formation of segment boundaries in the hindbrain and somites, lfng expression is aberrant or lost.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Glicosiltransferasas , Biosíntesis de Proteínas , Proteínas/química , Secuencia de Aminoácidos , Animales , Proteínas Aviares , Embrión de Pollo , Clonación Molecular , ADN Complementario/metabolismo , Hibridación in Situ , Proteínas de la Membrana/metabolismo , Ratones , Datos de Secuencia Molecular , Receptores Notch , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Pez Cebra , Proteínas de Pez Cebra
2.
Genes Dev ; 14(13): 1678-90, 2000 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-10887161

RESUMEN

Somitogenesis has been linked both to a molecular clock that controls the oscillation of gene expression in the presomitic mesoderm (PSM) and to Notch pathway signaling. The oscillator, or clock, is thought to create a prepattern of stripes of gene expression that regulates the activity of the Notch pathway that subsequently directs somite border formation. Here, we report that the zebrafish gene after eight (aei) that is required for both somitogenesis and neurogenesis encodes the Notch ligand DeltaD. Additional analysis revealed that stripes of her1 expression oscillate within the PSM and that aei/DeltaD signaling is required for this oscillation. aei/DeltaD expression does not oscillate, indicating that the activity of the Notch pathway upstream of her1 may function within the oscillator itself. Moreover, we found that her1 stripes are expressed in the anlage of consecutive somites, indicating that its expression pattern is not pair-rule. Analysis of her1 expression in aei/DeltaD, fused somites (fss), and aei;fss embryos uncovered a wave-front activity that is capable of continually inducing her1 expression de novo in the anterior PSM in the absence of the oscillation of her1. The wave-front activity, in reference to the clock and wave-front model, is defined as such because it interacts with the oscillator-derived pattern in the anterior PSM and is required for somite morphogenesis. This wave-front activity is blocked in embryos mutant for fss but not aei/DeltaD. Thus, our analysis indicates that the smooth sequence of formation, refinement, and fading of her1 stripes in the PSM is governed by two separate activities.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas de la Membrana/fisiología , Somitos , Pez Cebra/embriología , Animales , Péptidos y Proteínas de Señalización Intracelular , Pez Cebra/genética
3.
Curr Top Dev Biol ; 47: 247-77, 2000.
Artículo en Inglés | MEDLINE | ID: mdl-10595307

RESUMEN

Both genetic and embryological studies in the zebrafish, Danio rerio, have contributed to our general understanding of how somites form and differentiate. In the zebrafish, mutants have been isolated that have specific effects on virtually every aspect of somite development. The fss-type mutants, defining 5 genes, affect somite segmentation and epithelialization. The you-type mutants, comprising 7 genes, and mutants in another 13 genes defective in notochord formation, have somites with abnormal pattern and morphology. Eighteen genes have been identified that are required for the differentiation and maintenance of the somitic musculature, and 2 genes have been identified that are involved in the development of motoneurons that innervate the somitic musculature. The true utility of the zebrafish lies in the ability to combine genetic analysis with embryological experimentation. Such analysis of somite segmentation suggests that homologues of both the Drosophila pair-rule and segment polarity genes, her1 and Sonic hedge-hog, respectively, are involved generating periodicity during somitogenesis. The Sonic hedge-hog protein secreted from the notochord also induces the formation of specific muscle types including the slow muscle fibers which are initially induced in the medial somite and undergo a series of morphological transitions including migration through the somite to the lateral surface where they complete their differentiation. The role of the notochord in patterning the somite is also demonstrated by its involvement in regulating the permissiveness of the somite to the extension of axons of primary motoneurons.


Asunto(s)
Músculo Esquelético/embriología , Somitos/fisiología , Pez Cebra/embriología , Animales , Insectos/embriología , Mesodermo/fisiología , Morfogénesis , Vertebrados/embriología
4.
Dev Genet ; 23(1): 65-76, 1998.
Artículo en Inglés | MEDLINE | ID: mdl-9706695

RESUMEN

Segmentation in the vertebrate embryo is evident within the paraxial mesoderm in the form of somites, which are repeated structures that give rise to the vertebrae and muscle of the trunk and tail. In the zebrafish, our genetic screen identified two groups of mutants that affect somite formation and pattern. Mutations of one class, the fss-type mutants, disrupt the formation of the anterior-posterior somite boundaries during somitogenesis. However, segmentation within the paraxial mesoderm is not completely eliminated in these mutants. Irregular somite boundaries form later during embryogenesis and, strikingly, the vertebrae are not fused. Here, we show that formation of the irregular somite boundaries in these mutants is dependent upon the activity of a second group of genes, the you-type genes, which include sonic you, the zebrafish homologue of the Drosophila segment polarity gene, sonic hedgehog. Further to characterize the defects caused by the fss-type mutations, we examined their effects on the expression of her1, a zebrafish homologue of the Drosophila pair-rule gene hairy. In wild-type embryos, her1 is expressed in a dynamic, repeating pattern, remarkably similar to that of its Drosophila and Tribolium counterparts, suggesting that a pair-rule mechanism also functions in the segmentation of the vertebrate paraxial mesoderm. We have found that the fss-type mutants have abnormal pair-rule patterning. Although a her1 mutant could not be identified, analysis of a double mutant that abolishes most her1 expression suggests that a her1 mutant may not display a pair-rule phenotype analogous to the hairy phenotype observed in Drosophila. Cumulatively, our data indicate that zebrafish homologues of both the Drosophila segment polarity genes and pair-rule genes are involved in segmenting the paraxial mesoderm. However, both the relationship between these two groups of genes within the genetic heirarchy governing segmentation and the precise roles that they play during segmentation likely differ significantly between the two organisms.


Asunto(s)
Tipificación del Cuerpo/genética , Pez Cebra/embriología , Pez Cebra/genética , Animales , Drosophila/embriología , Drosophila/genética , Regulación del Desarrollo de la Expresión Génica , Genes de Insecto , Ligamiento Genético , Mutación , Fenotipo , Somitos/citología , Especificidad de la Especie
5.
Bioessays ; 19(4): 281-4, 1997 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-9136625

RESUMEN

Genetic analysis of Drosophila has shown that a morphogenetic gradient of the Transforming Growth Factor-beta family member dpp patterns the embryonic dorsal-ventral axis. Molecular and embryological evidence from Xenopus has strongly suggested a similar role for Bmp-4, the dpp homolog, in patterning the dorsal-ventral axis of chordates. A recent report has now identified mutations in two genes, dino and swirl, that disrupt dorsal-ventral patterning in the zebrafish Danio rerio. Characterization of these mutations parallels findings from Drosophila, thus establishing a genetic framework for the analysis of dorsal-ventral patterning in a vertebrate.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster/embriología , Regulación del Desarrollo de la Expresión Génica , Morfogénesis/fisiología , Xenopus laevis/embriología , Pez Cebra/embriología , Animales , Proteína Morfogenética Ósea 4 , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/fisiología , Drosophila melanogaster/genética , Embrión no Mamífero/fisiología , Embrión no Mamífero/ultraestructura , Inducción Embrionaria/fisiología , Evolución Molecular , Genes , Genes de Insecto , Genes Reguladores , Proteínas de Insectos/genética , Proteínas de Insectos/fisiología , Proteínas de Xenopus , Xenopus laevis/genética , Pez Cebra/genética , Proteínas de Pez Cebra
6.
Cell ; 86(4): 607-17, 1996 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-8752215

RESUMEN

noggin is expressed in the Spemann organizer region of the Xenopus embryo and can promote dorsal cell fates within the mesoderm and neural development within the overlying ectoderm. Here, we show that noggin promotes ventral development in Drosophila, specifying ventral ectoderm and CNS in the absence of all endogenous ventral-specific zygotic gene expression. We utilize constitutively active forms of the dpp receptors to demonstrate that noggin blocks dpp signaling upstream of dpp receptor activation. These results suggest a mechanistic basis for the action of Spemann's organizer during Xenopus development and provide further support for the conservation of dorsal-ventral patterning mechanisms between arthropods and chordates.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster/embriología , Hormonas de Insectos/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas/fisiología , Receptores de Superficie Celular/fisiología , Xenopus laevis/embriología , Receptores de Activinas , Animales , Secuencia de Bases , Proteínas Morfogenéticas Óseas , Proteínas Portadoras , Cartilla de ADN/química , Ectodermo/citología , Inducción Embrionaria , Epistasis Genética , Femenino , Humanos , Masculino , Microinyecciones , Datos de Secuencia Molecular , Morfogénesis , Proteínas/farmacología , ARN Mensajero/administración & dosificación , Receptores de Factores de Crecimiento/fisiología , Proteínas Recombinantes , Transducción de Señal , Especificidad de la Especie
7.
Nature ; 376(6537): 249-53, 1995 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-7617035

RESUMEN

Dorsal-ventral patterning within the ectoderm of the Drosophila embryo requires seven zygotic genes, including short gastrulation (sog). Here we demonstrate that sog, which is expressed in the ventrolateral region of the embryo that gives rise to the nerve cord, is functionally homologous to the chordin gene of Xenopus, which is expressed in the dorsal blastopore lip of the embryo and in dorsal mesoderm, in particular the notochord. We show by injections of messenger RNA that both sog and chordin can promote ventral development in Drosophila, and that sog, like chordin, can promote dorsal development in Xenopus. In Drosophila, sog antagonizes the dorsalizing effects of decapentaplegic (dpp), a member of the transforming growth factor-beta family. One of the dpp homologues in vertebrates, bmp-4, is expressed ventrally in Xenopus and promotes ventral development. We show that dpp can promote ventral fates in Xenopus, and that injection of sog mRNA counteracts the ventralizing effects of dpp. These results suggest the molecular conservation of dorsoventral patterning mechanisms during evolution.


Asunto(s)
Proteínas de Drosophila , Desarrollo Embrionario , Glicoproteínas , Hormonas de Insectos/fisiología , Péptidos y Proteínas de Señalización Intercelular , Proteínas/fisiología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Proteínas Morfogenéticas Óseas , Drosophila , Femenino , Hormonas de Insectos/genética , Datos de Secuencia Molecular , Proteínas/genética , Proteínas Recombinantes de Fusión/genética , Xenopus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA