Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Physiol ; 602(18): 4409-4436, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38345865

RESUMEN

Androgenic anabolic steroids (AAS) are commonly abused by young men. Male sex and increased AAS levels are associated with earlier and more severe manifestation of common cardiac conditions, such as atrial fibrillation, and rare ones, such as arrhythmogenic right ventricular cardiomyopathy (ARVC). Clinical observations suggest a potential atrial involvement in ARVC. Arrhythmogenic right ventricular cardiomyopathy is caused by desmosomal gene defects, including reduced plakoglobin expression. Here, we analysed clinical records from 146 ARVC patients to identify that ARVC is more common in males than females. Patients with ARVC also had an increased incidence of atrial arrhythmias and P wave changes. To study desmosomal vulnerability and the effects of AAS on the atria, young adult male mice, heterozygously deficient for plakoglobin (Plako+/-), and wild type (WT) littermates were chronically exposed to 5α-dihydrotestosterone (DHT) or placebo. The DHT increased atrial expression of pro-hypertrophic, fibrotic and inflammatory transcripts. In mice with reduced plakoglobin, DHT exaggerated P wave abnormalities, atrial conduction slowing, sodium current depletion, action potential amplitude reduction and the fall in action potential depolarization rate. Super-resolution microscopy revealed a decrease in NaV1.5 membrane clustering in Plako+/- atrial cardiomyocytes after DHT exposure. In summary, AAS combined with plakoglobin deficiency cause pathological atrial electrical remodelling in young male hearts. Male sex is likely to increase the risk of atrial arrhythmia, particularly in those with desmosomal gene variants. This risk is likely to be exaggerated further by AAS use. KEY POINTS: Androgenic male sex hormones, such as testosterone, might increase the risk of atrial fibrillation in patients with arrhythmogenic right ventricular cardiomyopathy (ARVC), which is often caused by desmosomal gene defects (e.g. reduced plakoglobin expression). In this study, we observed a significantly higher proportion of males who had ARVC compared with females, and atrial arrhythmias and P wave changes represented a common observation in advanced ARVC stages. In mice with reduced plakoglobin expression, chronic administration of 5α-dihydrotestosterone led to P wave abnormalities, atrial conduction slowing, sodium current depletion and a decrease in membrane-localized NaV1.5 clusters. 5α-Dihydrotestosterone, therefore, represents a stimulus aggravating the pro-arrhythmic phenotype in carriers of desmosomal mutations and can affect atrial electrical function.


Asunto(s)
gamma Catenina , Animales , Masculino , Femenino , Ratones , Humanos , gamma Catenina/genética , gamma Catenina/metabolismo , Adulto , Atrios Cardíacos/efectos de los fármacos , Atrios Cardíacos/fisiopatología , Atrios Cardíacos/metabolismo , Displasia Ventricular Derecha Arritmogénica/genética , Displasia Ventricular Derecha Arritmogénica/fisiopatología , Displasia Ventricular Derecha Arritmogénica/metabolismo , Dihidrotestosterona/farmacología , Andrógenos/farmacología , Potenciales de Acción/efectos de los fármacos , Ratones Endogámicos C57BL , Adulto Joven , Anabolizantes/farmacología , Esteroides Anabólicos Androgénicos
3.
Europace ; 26(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38227822

RESUMEN

State-of-the-art innovations in optical cardiac electrophysiology are significantly enhancing cardiac research. A potential leap into patient care is now on the horizon. Optical mapping, using fluorescent probes and high-speed cameras, offers detailed insights into cardiac activity and arrhythmias by analysing electrical signals, calcium dynamics, and metabolism. Optogenetics utilizes light-sensitive ion channels and pumps to realize contactless, cell-selective cardiac actuation for modelling arrhythmia, restoring sinus rhythm, and probing complex cell-cell interactions. The merging of optogenetics and optical mapping techniques for 'all-optical' electrophysiology marks a significant step forward. This combination allows for the contactless actuation and sensing of cardiac electrophysiology, offering unprecedented spatial-temporal resolution and control. Recent studies have performed all-optical imaging ex vivo and achieved reliable optogenetic pacing in vivo, narrowing the gap for clinical use. Progress in optical electrophysiology continues at pace. Advances in motion tracking methods are removing the necessity of motion uncoupling, a key limitation of optical mapping. Innovations in optoelectronics, including miniaturized, biocompatible illumination and circuitry, are enabling the creation of implantable cardiac pacemakers and defibrillators with optoelectrical closed-loop systems. Computational modelling and machine learning are emerging as pivotal tools in enhancing optical techniques, offering new avenues for analysing complex data and optimizing therapeutic strategies. However, key challenges remain including opsin delivery, real-time data processing, longevity, and chronic effects of optoelectronic devices. This review provides a comprehensive overview of recent advances in optical mapping and optogenetics and outlines the promising future of optics in reshaping cardiac electrophysiology and therapeutic strategies.


Asunto(s)
Técnicas Electrofisiológicas Cardíacas , Optogenética , Humanos , Técnicas Electrofisiológicas Cardíacas/métodos , Optogenética/métodos , Electrofisiología Cardíaca/métodos , Corazón , Arritmias Cardíacas/terapia
4.
J Am Heart Assoc ; 13(1): e032277, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38156451

RESUMEN

Atrial fibrillation (AF) is the most common cardiac arrhythmia. AF increases the risk of stroke, heart failure, dementia, and hospitalization. Obesity significantly increases AF risk, both directly and indirectly, through related conditions, like hypertension, diabetes, and heart failure. Obesity-driven structural and electrical remodeling contribute to AF via several reported mechanisms, including adiposity, inflammation, fibrosis, oxidative stress, ion channel alterations, and autonomic dysfunction. In particular, expanding epicardial adipose tissue during obesity has been suggested as a key driver of AF via paracrine signaling and direct infiltration. Weight loss has been shown to reverse these changes and reduce AF risk and recurrence after ablation. However, studies on how obesity affects pharmacologic or interventional AF treatments are limited. In this review, we discuss mechanisms by which obesity mediates AF and treatment outcomes, aiming to provide insight into obesity-drug interactions and guide personalized treatment for this patient subgroup.


Asunto(s)
Fibrilación Atrial , Insuficiencia Cardíaca , Humanos , Fibrilación Atrial/epidemiología , Fibrilación Atrial/etiología , Fibrilación Atrial/terapia , Obesidad/complicaciones , Obesidad/epidemiología , Obesidad/terapia , Resultado del Tratamiento , Adiposidad
5.
Adv Exp Med Biol ; 1427: 175-184, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37322348

RESUMEN

Angiotensin II (Ang II) is a hormone that plays a major role in maintaining homeostasis. The Ang II receptor type 1 (AT1R) is expressed in acute O2 sensitive cells, including carotid body (CB) type I cells and pheochromocytoma 12 (PC12) cells, and Ang II increases cell activity. While a functional role for Ang II and AT1Rs in increasing the activity of O2 sensitive cells has been established, the nanoscale distribution of AT1Rs has not. Furthermore, it is not known how exposure to hypoxia may alter the single-molecule arrangement and clustering of AT1Rs. In this study, the AT1R nanoscale distribution under control normoxic conditions in PC12 cells was determined using direct stochastic optical reconstruction microscopy (dSTORM). AT1Rs were arranged in distinct clusters with measurable parameters. Across the entire cell surface there averaged approximately 3 AT1R clusters/µm2 of cell membrane. Cluster area varied in size ranging from 1.1 × 10-4 to 3.9 × 10-2 µm2. Twenty-four hours of exposure to hypoxia (1% O2) altered clustering of AT1Rs, with notable increases in the maximum cluster area, suggestive of an increase in supercluster formation. These observations could aid in understanding mechanisms underlying augmented Ang II sensitivity in O2 sensitive cells in response to sustained hypoxia.


Asunto(s)
Neoplasias de las Glándulas Suprarrenales , Feocromocitoma , Ratas , Animales , Microscopía , Células PC12 , Receptor de Angiotensina Tipo 1/metabolismo , Hipoxia , Angiotensina II/metabolismo , Angiotensina II/farmacología
6.
Cells ; 12(12)2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37371131

RESUMEN

Obstructive sleep apnoea (OSA) is a strong independent risk factor for atrial fibrillation (AF). Emerging clinical data cite adverse effects of OSA on AF induction, maintenance, disease severity, and responsiveness to treatment. Prevention using continuous positive airway pressure (CPAP) is effective in some groups but is limited by its poor compliance. Thus, an improved understanding of the underlying arrhythmogenic mechanisms will facilitate the development of novel therapies and/or better selection of those currently available to complement CPAP in alleviating the burden of AF in OSA. Arrhythmogenesis in OSA is a multifactorial process characterised by a combination of acute atrial stimulation on a background of chronic electrical, structural, and autonomic remodelling. Chronic intermittent hypoxia (CIH), a key feature of OSA, is associated with long-term adaptive changes in myocyte ion channel currents, sensitising the atria to episodic bursts of autonomic reflex activity. CIH is also a potent driver of inflammatory and hypoxic stress, leading to fibrosis, connexin downregulation, and conduction slowing. Atrial stretch is brought about by negative thoracic pressure (NTP) swings during apnoea, promoting further chronic structural remodelling, as well as acutely dysregulating calcium handling and electrical function. Here, we provide an up-to-date review of these topical mechanistic insights and their roles in arrhythmia.


Asunto(s)
Fibrilación Atrial , Apnea Obstructiva del Sueño , Humanos , Fibrilación Atrial/complicaciones , Atrios Cardíacos , Frecuencia Cardíaca , Presión de las Vías Aéreas Positiva Contínua/efectos adversos , Hipoxia/complicaciones , Apnea Obstructiva del Sueño/complicaciones , Apnea Obstructiva del Sueño/terapia
8.
F1000Res ; 12: 1224, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38298530

RESUMEN

Animal models have proven integral to broadening our understanding of complex cardiac diseases but have been hampered by significant species-dependent differences in cellular physiology. Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have shown great promise in the modelling of cardiac diseases despite limitations in functional and structural maturity. 3D stem cell-derived cardiac models represent a step towards mimicking the intricate microenvironment present in the heart as an in vitro model. Incorporation of non-myocyte cell types, such as cardiac fibroblasts, into engineered heart tissue models (EHTs) can help better recapitulate the cell-to-cell and cell-to-matrix interactions present in the human myocardium. Integration of human-induced pluripotent stem cell-derived cardiac fibroblasts (hiPSC-CFs) and hiPSC-CM into EHT models enables the generation of a genetically homogeneous modelling system capable of exploring the abstruse structural and electrophysiological interplay present in cardiac pathophysiology. Furthermore, the construction of more physiologically relevant 3D cardiac models offers great potential in the replacement of animals in heart disease research. Here we describe efficient and reproducible protocols for the differentiation of hiPSC-CMs and hiPSC-CFs and their subsequent assimilation into EHTs. The resultant EHT consists of longitudinally arranged iPSC-CMs, incorporated alongside hiPSC-CFs. EHTs with both hiPSC-CMs and hiPSC-CFs exhibit slower beating frequencies and enhanced contractile force compared to those composed of hiPSC-CMs alone. The modified protocol may help better characterise the interplay between different cell types in the myocardium and their contribution to structural remodelling and cardiac fibrosis.


Asunto(s)
Cardiopatías , Células Madre Pluripotentes Inducidas , Animales , Humanos , Miocitos Cardíacos , Miocardio/metabolismo , Ingeniería de Tejidos/métodos
9.
ACS Appl Mater Interfaces ; 14(45): 50543-50556, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36331290

RESUMEN

The COVID-19 pandemic has revealed the importance of the detection of airborne pathogens. Here, we present composite air filters featuring a bioinspired liquid coating that facilitates the removal of captured aerosolized bacteria and viruses for further analysis. We tested three types of air filters: commercial polytetrafluoroethylene (PTFE), which is well known for creating stable liquid coatings, commercial high-efficiency particulate air (HEPA) filters, which are widely used, and in-house-manufactured cellulose nanofiber mats (CNFMs), which are made from sustainable materials. All filters were coated with omniphobic fluorinated liquid to maximize the release of pathogens. We found that coating both the PTFE and HEPA filters with liquid improved the rate at which Escherichia coli was recovered using a physical removal process compared to uncoated controls. Notably, the coated HEPA filters also increased the total number of recovered cells by 57%. Coating the CNFM filters did not improve either the rate of release or the total number of captured cells. The most promising materials, the liquid-coated HEPA, filters were then evaluated for their ability to facilitate the removal of pathogenic viruses via a chemical removal process. Recovery of infectious JC polyomavirus, a nonenveloped virus that attacks the central nervous system, was increased by 92% over uncoated controls; however, there was no significant difference in the total amount of genomic material recovered compared to that of controls. In contrast, significantly more genomic material was recovered for SARS-CoV-2, the airborne, enveloped virus, which causes COVID-19, from liquid-coated filters. Although the amount of infectious SARS-CoV-2 recovered was 58% higher, these results were not significantly different from uncoated filters due to high variability. These results suggest that the efficient recovery of airborne pathogens from liquid-coated filters could improve air sampling efforts, enhancing biosurveillance and global pathogen early warning.


Asunto(s)
Filtros de Aire , COVID-19 , Virus , Humanos , Pandemias , SARS-CoV-2 , COVID-19/prevención & control , Bacterias , Polvo , Politetrafluoroetileno
10.
PLoS One ; 17(11): e0277134, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36331951

RESUMEN

Human dental pulp stem cells (hDPSCs) have increasingly gained interest as a potential therapy for nerve regeneration in medicine and dentistry, however their neurogenic potential remains a matter of debate. This study aimed to characterize hDPSC neuronal differentiation in comparison with the human SH-SY5Y neuronal stem cell differentiation model. Both hDPSCs and SH-SY5Y could be differentiated to generate typical neuronal-like cells following sequential treatment with all-trans retinoic acid (ATRA) and brain-derived neurotrophic factor (BDNF), as evidenced by significant expression of neuronal proteins ßIII-tubulin (TUBB3) and neurofilament medium (NF-M). Both cell types also expressed multiple neural gene markers including growth-associated protein 43 (GAP43), enolase 2/neuron-specific enolase (ENO2/NSE), synapsin I (SYN1), nestin (NES), and peripherin (PRPH), and exhibited measurable voltage-activated Na+ and K+ currents. In hDPSCs, upregulation of acetylcholinesterase (ACHE), choline O-acetyltransferase (CHAT), sodium channel alpha subunit 9 (SCN9A), POU class 4 homeobox 1 (POU4F1/BRN3A) along with a downregulation of motor neuron and pancreas homeobox 1 (MNX1) indicated that differentiation was more guided toward a cholinergic sensory neuronal lineage. Furthermore, the Extracellular signal-regulated kinase 1/2 (ERK1/2) inhibitor U0126 significantly impaired hDPSC neuronal differentiation and was associated with reduction of the ERK1/2 phosphorylation. In conclusion, this study demonstrates that extracellular signal-regulated kinase/Mitogen-activated protein kinase (ERK/MAPK) is necessary for sensory cholinergic neuronal differentiation of hDPSCs. hDPSC-derived cholinergic sensory neuronal-like cells represent a novel model and potential source for neuronal regeneration therapies.


Asunto(s)
Acetilcolinesterasa , Neuroblastoma , Humanos , Acetilcolinesterasa/metabolismo , Pulpa Dental/metabolismo , Neuroblastoma/metabolismo , Diferenciación Celular , Tretinoina/farmacología , Células Madre , Colinérgicos , Células Cultivadas , Factores de Transcripción/metabolismo , Proteínas de Homeodominio/metabolismo , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA