Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharmacol Ther ; 253: 108574, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38072333

RESUMEN

Psychiatric and substance use disorders inflict major public health burdens worldwide. Their widespread burden is compounded by a dearth of effective treatments, underscoring a dire need to uncover novel therapeutic targets. In this review, we summarize the literature implicating organic cation transporters (OCTs), including three subtypes of OCTs (OCT1, OCT2, and OCT3) and the plasma membrane monoamine transporter (PMAT), in the neurobiology of psychiatric and substance use disorders with an emphasis on mood and anxiety disorders, alcohol use disorder, and psychostimulant use disorder. OCTs transport monoamines with a low affinity but high capacity, situating them to play a central role in regulating monoamine homeostasis. Preclinical evidence discussed here suggests that OCTs may serve as promising targets for treatment of psychiatric and substance use disorders and encourage future research into their therapeutic potential.


Asunto(s)
Proteínas de Transporte de Catión Orgánico , Trastornos Relacionados con Sustancias , Humanos , Proteínas de Transporte de Catión Orgánico/metabolismo , Homeostasis , Cationes/metabolismo , Transporte Biológico
2.
Cell Chem Biol ; 30(12): 1557-1570.e6, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-37992715

RESUMEN

Depression pathology remains elusive. The monoamine hypothesis has placed much focus on serotonin, but due to the variable clinical efficacy of monoamine reuptake inhibitors, the community is looking for alternative therapies such as ketamine (neurogenesis theory of antidepressant action). There is evidence that different classes of antidepressants may affect serotonin levels; a notion we test here. We measure hippocampal serotonin in mice with voltammetry and study the effects of acute challenges of escitalopram, fluoxetine, reboxetine, and ketamine. We find that pseudo-equivalent doses of these drugs similarly raise ambient serotonin levels, despite their differing pharmacodynamics because of differences in Uptake 1 and 2, rapid SERT trafficking, and modulation of serotonin by histamine. These antidepressants have different pharmacodynamics but have strikingly similar effects on extracellular serotonin. Our findings suggest that serotonin is a common thread that links clinically effective antidepressants, synergizing different theories of depression (synaptic plasticity, neurogenesis, and the monoamine hypothesis).


Asunto(s)
Ketamina , Serotonina , Ratones , Animales , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Ketamina/farmacología , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Fluoxetina/farmacología
3.
Res Sq ; 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37034599

RESUMEN

Depression pathology remains elusive. The monoamine hypothesis has placed much focus on serotonin, but due to the variable clinical efficacy of monoamine reuptake inhibitors, the community is looking for alternative therapies such as ketamine (synaptic plasticity and neurogenesis theory of antidepressant action). There is evidence that different classes of antidepressants may affect serotonin levels; a notion we test here. We measure hippocampal serotonin in mice with voltammetry and study the effects of acute challenges of antidepressants. We find that pseudo-equivalent doses of these drugs similarly raise ambient serotonin levels, despite their differing pharmacodynamics because of differences in Uptake 1 and 2, rapid SERT trafficking and modulation of serotonin by histamine. These antidepressants have different pharmacodynamics but have strikingly similar effects on extracellular serotonin. Our findings suggest that serotonin is a common thread that links clinically effective antidepressants, synergizing different theories of depression (synaptic plasticity, neurogenesis and the monoamine hypothesis).

4.
ACS Meas Sci Au ; 2(3): 241-250, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35726253

RESUMEN

Fast-scan adsorption-controlled voltammetry (FSCAV) was recently derived from fast-scan cyclic voltammetry to estimate the absolute concentrations of neurotransmitters by using the innate adsorption properties of carbon fiber microelectrodes. This technique has improved our knowledge of serotonin dynamics in vivo. However, the analysis of FSCAV data is laborious and technically challenging. First, each electrode requires post-experimental in vitro calibration. Second, current analysis methods are semi-manual and time-consuming and require a steep learning curve. Finally, the calibration methods used do not adapt to nonlinear electrode responses. In this work, we provide freely accessible computational solutions to these issues. First, we design an artificial neural network (ANN) and train it with a large data set (calibrations from 140 electrodes by six different researchers) to achieve calibration-free estimations and improve predictive error. We discuss the power of the ANN to obtain a low predictive error without electrode-specific calibrations as a function of being able to predict the sensitivity of the electrode. We use the ANN to successfully predict the absolute serotonin concentrations of real in vivo data. Finally, we create a fast and user-friendly, fully automated analysis web platform to simplify and reduce the expertise required for the postanalysis of FSCAV signals.

5.
Cells ; 11(10)2022 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-35626755

RESUMEN

Serotonin is an important neurotransmitter that plays a major role in many aspects of neuroscience. Fast-scan cyclic voltammetry measures fast in vivo serotonin dynamics using carbon fiber microelectrodes. More recently, fast-scan controlled-adsorption voltammetry (FSCAV) has been developed to measure slower, minute-to-minute changes in ambient extracellular serotonin. We have previously demonstrated that FSCAV measurements of basal serotonin levels give critical information regarding brain physiology and disease. In this work, we revealed the presence of low-periodicity fluctuations in serotonin levels in mouse hippocampi, measured in vivo with FSCAV. Using correlation analyses, we found robust evidence of oscillations in the basal serotonin levels, which had a period of 10 min and were not present in vitro. Under control conditions, the oscillations did not differ between male and female mice, nor do they differ between mice that underwent a chronic stress paradigm and those in the control group. After the acute administration of a selective serotonin reuptake inhibitor, we observed a shift in the frequency of the oscillations, leading us to hypothesize that the newly observed fluctuations were transporter regulated. Finally, we optimized the experimental parameters of the FSCAV to measure at a higher temporal resolution and found more pronounced shifts in the oscillation frequency, along with a decreased oscillation amplitude. We postulate that this work may serve as a potential bridge for studying serotonin/endocrine interactions that occur on the same time scale.


Asunto(s)
Encéfalo , Serotonina , Animales , Femenino , Masculino , Ratones , Microelectrodos , Neurotransmisores , Serotonina/análisis , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...