Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
BJC Rep ; 2(1): 70, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39281316

RESUMEN

Background: Biomarkers that effectively predict response to anti-PD-1 mAb therapy in cancer patients are an unmet need. We evaluated the utility of small extracellular vesicles (sEV) as biomarkers of response to immunotherapy in recurrent/metastatic (R/M) head and neck squamous cell carcinoma (HNSCC) patients. Methods: Plasma sEV were isolated from 24 R/M HNSCC patients prior to immunotherapy initiation. sEV were separated by immune capture into T cell-derived CD3(+) and tumor-enriched CD3(-) subsets. Stimulatory and suppressive profiles of CD3(-) sEV were determined by on-bead flow cytometry. Differences were assessed using nonparametric tests. Multivariable Cox regression was used to evaluate the relationship with overall (OS) and progression free survival (PFS). Results: CD3(-)CD44v3(+) sEV represented the majority of plasma sEV; the T-cell-derived CD3(+) fraction was significantly smaller. High CD3(+) sEV was associated with better OS and PFS. Total CD3(-)CD44v3(+) sEV was not associated with outcome. However, suppressive and stimulatory profiles were associated with OS; the suppressive/stimulatory ratio was associated with best response. Exploration of individual proteins on CD3(-) sEV showed that high PD-L1 and high CTLA-4 were associated with better outcomes. Conclusions: Evaluation of the T cell-derived-CD3(+) and tumor-enriched CD3(-) plasma sEV subsets indicated their potential utility as biomarkers of response to immunotherapy.

2.
Purinergic Signal ; 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39066830

RESUMEN

Immunosuppression is a hallmark of cancer progression. Tumor-derived small extracellular vesicles (sEV), also known as TEX, produce adenosine (ADO) and can mediate tumor-induced immunosuppression.Here, the ATP pathway of ADO production (ATP →  ADP →  AMP →  ADO) by ecto-nucleotidases carried on the sEV surface was evaluated by a method using N6-etheno-ATP (eATP) and N6-etheno-AMP (eAMP) as substrates for enzymatic activity. The "downstream" N6-etheno-purines (ePurines) were measured by high performance liquid chromatography with fluorescence detection (HPLC-FL).Human melanoma cell-derived TEX (MTEX) metabolized eATP to N6-etheno-ADP (eADP), eAMP and N6-etheno-Adenosine (eADO) more robustly than control keratinocyte cell-derived sEV (CEX); due to accelerated conversion of eATP to eADP and eADP to eAMP. MTEX and CEX similarly metabolized eAMP to eADO. Blocking of the ATP pathway with the selective CD39 inhibitor ARL67156 or pan ecto-nucleotidase inhibitor POM-1 normalized the ATP pathway but neither inhibitor completely abolished it. In contrast, inhibition of CD73 by PSB12379 or AMPCP abolished eADO formation by both MTEX and CEX, suggesting that targeting CD73 is the preferred approach to eliminating ADO produced by ecto-nucleotidases located on the sEV surface.The noninvasive, sensitive, and specific assay assessing ePurine metabolism ± ecto-nucleotidase inhibitors in TEX enables the personalized identification of ecto-nucleotidase activity primarily involved in ADO production in patients with cancer. The assay could guide precision medicine by determining which purine is the preferred target for inhibitory therapeutic interventions.

3.
BJC Rep ; 2(1)2024.
Artículo en Inglés | MEDLINE | ID: mdl-38938748

RESUMEN

Background: Small (30-150nm) extracellular vesicles (sEV), also known as exosomes, play a key role in cell-to-cell signaling. They are produced by all cells, circulate freely and are present in all body fluids. Evidence indicates that cytokines are present on the surface and/or in the lumen of sEV. The contribution of intravesicular cytokines to cytokine levels in plasma are unknown. Methods: sEV were isolated by ultrafiltration/size exclusion chromatography from pre-cleared plasma obtained from patients with head and neck squamous cell carcinoma (HNSCC) and healthy donors (HDs). Multiplex immunoassays were used to measure cytokine levels in paired untreated and detergent-treated (0.5% Triton X-100) plasma and plasma-derived detergent-treated sEV. Non-parametric tests were used to assess differences in cytokine levels. Results: The presence of cytokines in sEV isolated from patients' and HDs' plasma was confirmed by immunoblots and on-bead flow cytometry. sEV-associated cytokines were functional in various in vitro assays. Levels of cytokines in sEV varied among the HNSCC patients and were generally significantly higher than the levels observed in sEV from HDs. Compared to untreated plasma, levels for the majority (40/51) of the evaluated proteins were significantly higher in detergent-treated plasma (P<0.0001-0.03). In addition, levels of 24/51 proteins in sEV, including IL6, TNFRII, IL-17a, IFNa and IFNg, were significantly positively correlated with the difference between levels detected in detergent-treated plasma and untreated plasma. Discussion: The data indicate that sEV-associated cytokines account for the differences in cytokine levels measured in detergent-treated versus untreated plasma. Ab-based assays using untreated plasma detect only soluble cytokines and miss cytokines carried in the lumen of sEV. Permeabilization of sEV with a mild detergent allows for Ab-based detection of sEV-associated and soluble cytokines in plasma. The failure to detect cytokines carried in the sEV lumen leads to inaccurate estimates of cytokine levels in body fluids.

4.
Res Sq ; 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38343828

RESUMEN

Background: Immunosuppression is a hallmark of cancer progression. Tumor-derived small extracellular vesicles (sEV), also known as TEX, produce adenosine (ADO) and can mediate tumor-induced immunosuppression. Methods: Here, the ATP pathway of ADO production (ATP◊ADP◊AMP◊ADO) by ecto-nucleotidases carried in sEV was evaluated by a novel method using N6-etheno-ATP (eATP) and N6-etheno-AMP (eAMP) as substrates. The "downstream" N6-etheno-purines (ePurines) were measured by high performance liquid chromatography with fluorescence detection (HPLC-FL). Results: Human melanoma cell-derived TEX (MTEX) metabolized eATP to N6-etheno-ADP (eADP), eAMP and N6-etheno-Adenosine (eADO) more robustly than control keratinocyte cell-derived sEV (CEX); due to accelerated conversion of eATP to eADP and eADP to eAMP MTEX and CEX similarly metabolized eAMP to eADO. Blocking of the ATP pathway with the selective CD39 inhibitor ARL67156 or pan ecto-nucleotidase inhibitor POM-1 normalized the ATP pathway but neither inhibitor completely abolished it. In contrast, inhibition of CD73 by PSB12379 or AMPCP abolished eADO formation in both MTEX and CEX, suggesting that targeting CD73 is the preferred approach to eliminating ADO produced by sEV. Conclusions: The noninvasive, sensitive, and specific assay assessing ePurine metabolism ± ecto-nucleotidase inhibitors in TEX enables the personalized identification of the ecto-nucleotidase primarily involved in ADO production in patients with cancer. The assay could guide precision medicine by determining which purine is the preferred target for inhibitory therapeutic interventions.

5.
Biomedicines ; 11(12)2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38137457

RESUMEN

The small extracellular vesicles (sEV) accumulating in acute myeloid leukemia (AML) patients' plasma are mixtures of vesicles produced by leukemic and non-malignant cells. sEV originating from leukemia blasts could serve as potential non-invasive biomarkers of AML response to therapy. To isolate blast-derived sEV from patients' plasma, we developed a bioprinted microarray-based immunoassay using monoclonal antibodies (mAbs) specific for leukemia-associated antigens (LAAs) and mAbs specific for a mix of tetraspanins (CD9, CD63, and CD81). We determined the proportion of LAA+ sEV relative to total plasma sEV (the LAA+/total sEV ratio) in serially collected samples of newly diagnosed AML patients prior to, during, and after chemotherapy. At AML diagnosis, the LAA+/total sEV ratio was significantly higher in patients than in healthy donors (HDs). In patients who achieved complete remission (CR) after induction chemotherapy, the LAA+/total sEV ratios significantly decreased after each chemotherapy cycle to levels seen in HDs. In contrast, the LAA+/total sEV ratios in AML patients with persistent leukemia after therapy remained elevated during and after therapy, as did the percentage of leukemic blasts in these patients' bone marrows. The LAA+/total sEV ratio emerges as a promising non-invasive biomarker of leukemia response to therapy.

6.
Neuro Oncol ; 24(2): 197-209, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34254643

RESUMEN

BACKGROUND: Gliomas are the most common primary brain tumors and are universally fatal. Mutations in the isocitrate dehydrogenase genes (IDH1 and IDH2) define a distinct glioma subtype associated with an immunosuppressive tumor microenvironment. Mechanisms underlying systemic immunosuppression in IDH mutant (mutIDH) gliomas are largely unknown. Here, we define genotype-specific local and systemic tumor immunomodulatory functions of tumor-derived glioma small extracellular vesicles (TEX). METHODS: TEX produced by human and murine wildtype and mutant IDH glioma cells (wtIDH and mutIDH, respectively) were isolated by size exclusion chromatography (SEC). TEX morphology, size, quantity, molecular profiles and biodistribution were characterized. TEX were injected into naive and tumor-bearing mice, and the local and systemic immune microenvironment composition was characterized. RESULTS: Using in vitro and in vivo glioma models, we show that mutIDH TEX are more numerous, possess distinct morphological features and are more immunosuppressive than wtIDH TEX. mutIDH TEX cargo mimics their parental cells, and induces systemic immune suppression in naive and tumor-bearing mice. TEX derived from mutIDH gliomas and injected into wtIDH tumor-bearing mice reduce tumor-infiltrating effector lymphocytes, dendritic cells and macrophages, and increase circulating monocytes. Astonishingly, mutIDH TEX injected into brain tumor-bearing syngeneic mice accelerate tumor growth and increase mortality compared with wtIDH TEX. CONCLUSIONS: Targeting of mutIDH TEX represents a novel therapeutic approach in gliomas.


Asunto(s)
Neoplasias Encefálicas , Vesículas Extracelulares , Glioma , Tolerancia Inmunológica , Microambiente Tumoral , Animales , Neoplasias Encefálicas/patología , Vesículas Extracelulares/metabolismo , Glioma/patología , Humanos , Isocitrato Deshidrogenasa/genética , Ratones , Mutación , Distribución Tisular
7.
Int J Mol Sci ; 22(12)2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-34207762

RESUMEN

Extracellular vesicles (EVs) play a key role in health and disease, including cancer. Tumors produce a mix of EVs differing in size, cellular origin, biogenesis and molecular content. Small EVs (sEV) or exosomes are a subset of 30-150 nm (virus-size) vesicles originating from the multivesicular bodies (MVBs) and carrying a cargo that in its content and topography approximates that of a parent cell. Tumor-derived exosomes (TEX) present in all body fluids of cancer patients, are considered promising candidates for a liquid tumor biopsy. TEX also mediate immunoregulatory activities: they maintain a crosstalk between the tumor and various non-malignant cells, including immunocytes. Effects that EVs exert on immune cells may be immunosuppressive or immunostimulatory. Here, we review the available data for TEX interactions with immunocytes, focusing on strategies that allow isolation from plasma and separation of TEX from sEV produced by non-malignant cells. Immune effects mediated by either of the subsets can now be distinguished and measured. The approach has allowed for the comparison of molecular and functional profiles of the two sEV fractions in plasma of cancer patients. While TEX carried an excess of immunosuppressive proteins and inhibited immune cell functions in vitro and in vivo, the sEV derived from non-malignant cells, including CD3(+)T cells, were variably enriched in immunostimulatory proteins and could promote functions of immunocytes. Thus, sEV in plasma of cancer patients are heterogenous, representing a complex molecular network which is not evident in healthy donors' plasma. Importantly, TEX appear to be able to reprogram functions of non-malignant CD3(+)T cells inducing them to produce CD3(+)sEV enriched in immunosuppressive proteins. Ratios of stimulatory/inhibitory proteins carried by TEX and by CD3(+)sEV derived from reprogrammed non-malignant cells vary broadly in patients and appear to negatively correlate with disease progression. Simultaneous capture from plasma and functional/molecular profiling of TEX and the CD3(+)sEV fractions allows for defining their role as cancer biomarkers and as monitors of cancer patients' immune competence, respectively.


Asunto(s)
Biomarcadores de Tumor/inmunología , Exosomas/inmunología , Tolerancia Inmunológica/inmunología , Neoplasias/inmunología , Linfocitos T/inmunología , Animales , Humanos , Oncología Médica
9.
Cytometry A ; 99(4): 372-381, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33448645

RESUMEN

Exosomes, recently re-named "small extracellular vesicles" or "sEV," are emerging as an intercellular communication system. Quantification of the molecular cargo exosomes carry by on-bead flow cytometry is needed for defining their role in information transfer and in human disease. Exosomes (sEV) isolated from cell supernatants or plasma of cancer patients by size-exclusion chromatography were captured by biotinylated antibodies specific for antigens in the exosome cargo (e.g., tetraspanins) and placed on streptavidin-labeled beads. Detection was performed with pretitered fluorochrome-labeled antibodies of desired specificity. The data were acquired in a conventional cytometer, and molecules of equivalent soluble fluorochrome (MESF) beads were used to quantify the number of fluorescent molecules bound per bead. Isotype antibody controls were obligatory. The mean fluorescence intensity (MFI) value of each sample was converted into MESF units, and the separation index (SI), which quantifies separation of stained and isotype control beads, was determined. Various proteins identified by labeled antibodies were quantified on the surface of tumor cell-derived exosomes. To identify intravesicular cargo, such as cytokines or chemokines, exosomes were lysed with 0.3% Triton-100, and the proteins in lysates were loaded on aldehyde/sulfate latex beads for flow cytometry. Examples of quantitative surface and/or intravesicular on-bead flow cytometry for exosomes produced by various cells or present in body fluids of cancer patients are provided. On-bead flow cytometry standardized for use with conventional cytometers is a useful method for protein detection and quantitation in exosomes isolated from supernatants of cell lines or plasma of patients with cancer. © 2020 International Society for Advancement of Cytometry.


Asunto(s)
Exosomas , Vesículas Extracelulares , Neoplasias , Anticuerpos , Citometría de Flujo , Humanos
10.
Leukemia ; 35(7): 1925-1932, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33139859

RESUMEN

Mechanisms by which acute myeloid leukemia (AML) interferes with normal hematopoiesis are under intense investigation. Emerging evidence suggests that exosomes produced by leukemia blasts suppress hematopoiesis. Exosomes isolated from AML patients' plasma at diagnosis significantly and dose-dependently suppressed colony formation of normal hematopoietic progenitor cells (HPC). Levels of HPC suppression mediated by exosomes of AML patients who achieved complete remission (CR) were significantly decreased compared to those observed at AML diagnosis. Exosomes from plasma of patients who had achieved CR but with incomplete cell count recovery (CRi) after chemotherapy suppressed in vitro colony formation as effectively as did exosomes obtained at AML diagnosis. Dipeptidylpeptidase4 (DPP4/CD26), a serine protease that cleaves select penultimate amino acids of various proteins, has been previously implicated in the regulation of hematopoiesis. DPP4 was carried by exosomes from AML plasma or leukemia cell lines. Leukemia exosomes which suppressed HSC colony formation had markedly higher DPP4 functional activity than that detected in the exosomes of normal donors. Pharmacological inhibition of DPP4 activity in AML exosomes reversed the effects of exosome-mediated myelosuppression. Reversing the negative effects of exosomes on AML hematopoiesis, and thus improving cell count recovery, might emerge as a new therapeutic approach to AML.


Asunto(s)
Proliferación Celular/fisiología , Dipeptidil Peptidasa 4/metabolismo , Exosomas/metabolismo , Células Madre Hematopoyéticas/metabolismo , Leucemia Mieloide Aguda/metabolismo , Línea Celular Tumoral , Hematopoyesis/fisiología , Células Madre Hematopoyéticas/patología , Humanos , Leucemia Mieloide Aguda/patología
11.
J Extracell Vesicles ; 9(1): 1800979, 2020 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-32944189

RESUMEN

Most patients with acute myeloid leukaemia (AML) experience disease recurrence after chemotherapy largely due to the development of drug resistance. Small extracellular vesicles (sEVs) are known to play a significant role in leukaemia drug resistance by delivery of anti-apoptotic proteins and genes conferring resistance to recipient cells. sEV levels are elevated in AML patients' plasma at the time of diagnosis and remain elevated in complete remission after chemotherapy. The mechanism of enhanced sEV secretion in AML is unknown. We speculated that cholesterol synthesis by AML blasts may be related to elevated sEV secretion. Intracellular levels of cholesterol and of HMGCR (3-hydroxy-3-methyl-glutaryl-coenzyme A reductase), the rate-limiting enzyme in cholesterol synthesizing mevalonate pathway, significantly increased in cultured AML cells or primary human non-malignant cells treated with cytarabine or decitabine. Concomitantly, levels of sEVs produced by these cells also increased. Treatment with an HMGCR inhibitor, Simvastatin, or siRNAs targeting HMGCR blocked the chemotherapy-induced enhancement of sEV secretion in AML cells. sEVs carry HMGCR and chemotherapy enhances HMGCR levels in sEVs. HMGCR+ sEVs upregulate intracellular cholesterol and promote AML cell proliferation. A pharmacologic blockade of HMGCR emerges as a potential future therapeutic option for disrupting sEV signalling leading to cholesterol-driven chemo-resistance in AML.

12.
Carcinogenesis ; 41(5): 625-633, 2020 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-31245809

RESUMEN

Circulating tumor-derived exosomes (TEX) interact with a variety of cells in cancer-bearing hosts, leading to cellular reprogramming which promotes disease progression. To study TEX effects on the development of solid tumors, immunosuppressive exosomes carrying PD-L1 and FasL were isolated from supernatants of murine or human HNSCC cell lines. TEX were delivered (IV) to immunocompetent C57BL/6 mice bearing premalignant oral/esophageal lesions induced by the carcinogen, 4-nitroquinoline 1-oxide (4NQO). Progression of the premalignant oropharyngeal lesions to malignant tumors was monitored. A single TEX injection increased the number of developing tumors (6.2 versus 3.2 in control mice injected with phosphate-buffered saline; P < 0.0002) and overall tumor burden per mouse (P < 0.037). The numbers of CD4+ and CD8+ T lymphocytes infiltrating the developing tumors were coordinately reduced (P < 0.01) in mice injected with SCCVII-derived TEX relative to controls. Notably, TEX isolated from mouse or human tumors had similar effects on tumor development and immune cells. A single IV injection of TEX was sufficient to condition mice harboring premalignant OSCC lesions for accelerated tumor progression in concert with reduced immune cell migration to the tumor.


Asunto(s)
Carcinogénesis/patología , Carcinoma de Células Escamosas/patología , Proliferación Celular , Exosomas/patología , Neoplasias de la Boca/patología , 4-Nitroquinolina-1-Óxido/toxicidad , Animales , Apoptosis , Antígeno B7-H1/metabolismo , Carcinogénesis/inducido químicamente , Carcinogénesis/metabolismo , Carcinógenos/toxicidad , Carcinoma de Células Escamosas/inducido químicamente , Carcinoma de Células Escamosas/metabolismo , Exosomas/efectos de los fármacos , Exosomas/metabolismo , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Neoplasias de la Boca/inducido químicamente , Neoplasias de la Boca/metabolismo , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Curr Protoc Immunol ; 127(1): e91, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31763776

RESUMEN

A method for isolation of exosomes from tumor cell supernatants or cancer patients' plasma is presented. Tumor-derived exosomes (TEX) are defined as a subset of extracellular vesicles (EVs) sized at 30 to 150 nm and originating from multivesicular bodies (MVBs). The method utilizes size exclusion chromatography (SEC) for recovery of exosomes from cell-line supernatants or cancer patients' plasma. The recovered exosomes are morphologically intact, aggregate-free, and functionally competent. Their molecular content parallels that of the parent tumor cells and they carry various immunoregulatory ligands known to modulate functions of immune cells. All exosomes isolated from tumor cell lines are TEX, while those isolated from plasma of cancer patients have to be fractionated into TEX and non-TEX. Mini-SEC allows for exosome isolation and recovery in quantities sufficient for molecular profiling, functional studies, and, in the case of plasma, further fractionation into TEX and non-TEX. The mini-SEC method can also be used for comparative studies of the exosome content in serial specimens of cancer patients' body fluids. © 2019 by John Wiley & Sons, Inc.


Asunto(s)
Exosomas/química , Neoplasias/química , Animales , Fraccionamiento Celular , Línea Celular Tumoral , Cromatografía en Gel , Exosomas/inmunología , Humanos , Ratones , Neoplasias/inmunología , Neoplasias/patología
14.
Exp Hematol ; 76: 60-66.e2, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31369790

RESUMEN

Exosomes are virus-size membrane-bound vesicles of endocytic origin present in all body fluids. Plasma of AML patients is significantly enriched in exosomes, which carry a cargo of immunosuppressive molecules and deliver them to recipient immune cells, suppressing their functions. However, whether these exosomes originate from leukemic blasts or from various normal cells in the bone marrow or other tissues is unknown. In the current study, we developed an AML PDX model in mice and studied the molecular cargo and immune cell effects of the AML PDX exosomes in parallel with the exosomes from plasma of the corresponding AML patients. Fully engrafted AML PDX mice produced exosomes with characteristics similar to those of exosomes isolated from plasma of the AML patients who had donated the cells for engraftment. The engrafted leukemic cells produced exosomes that carried human proteins and leukemia-associated antigens, confirming the human origin of these exosomes. Furthermore, the AML-derived exosomes carried immunosuppressive proteins responsible for immune cell dysfunctions. Our studies of exosomes in AML PDX mice serve as a proof of concept that AML blasts are the source of immunosuppressive exosomes with a molecular profile that mimics the content and functions of the parental cells.


Asunto(s)
Exosomas , Leucemia Mieloide Aguda/patología , Células Madre Neoplásicas/metabolismo , Escape del Tumor/fisiología , Anciano , Animales , Antígenos de Neoplasias/sangre , Femenino , Xenoinjertos , Humanos , Leucemia Mielomonocítica Aguda/patología , Activación de Linfocitos , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Persona de Mediana Edad , Proteínas de Neoplasias/sangre , Trasplante de Neoplasias , Subgrupos de Linfocitos T/inmunología
15.
Cancer Immunol Immunother ; 68(7): 1133-1141, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31139925

RESUMEN

Advanced oral squamous cell carcinomas (OSCC) have limited therapeutic options. Although immune therapies are emerging as a potentially effective alternative or adjunct to chemotherapies, the therapeutic efficacy of combination immune chemotherapies has yet to be determined. Using a 4-nitroquinolone-N-oxide (4NQO) orthotopic model of OSCC in immunocompetent mice, we evaluated the therapeutic efficacy of single- and combined-agent treatment with a poly-epitope tumor peptide vaccine, cisplatin and/or an A2AR inhibitor, ZM241385. The monotherapies or their combinations resulted in a partial inhibition of tumor growth and, in some cases, a significant but transient upregulation of systemic anti-tumor CD8+ T cell responses. These responses eroded in the face of expanding immunoregulatory cell populations at later stages of tumor progression. Our findings support the need for the further development of combinatorial therapeutic approaches that could more effectively silence dominant immune inhibitory pathways operating in OSCC and provide novel, more beneficial treatment options for this tumor.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Vacunas contra el Cáncer/uso terapéutico , Inmunoterapia/métodos , Neoplasias de la Boca/terapia , Neoplasias Experimentales/terapia , Carcinoma de Células Escamosas de Cabeza y Cuello/terapia , 4-Nitroquinolina-1-Óxido/toxicidad , Animales , Cisplatino/uso terapéutico , Terapia Combinada/métodos , Femenino , Ratones , Ratones Endogámicos C57BL , Neoplasias de la Boca/inducido químicamente , Neoplasias de la Boca/inmunología , Neoplasias de la Boca/patología , Neoplasias Experimentales/inducido químicamente , Neoplasias Experimentales/inmunología , Neoplasias Experimentales/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/inducido químicamente , Carcinoma de Células Escamosas de Cabeza y Cuello/inmunología , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Resultado del Tratamiento , Triazinas/uso terapéutico , Triazoles/uso terapéutico , Vacunas de Subunidad/uso terapéutico
16.
J Extracell Vesicles ; 7(1): 1435138, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29511460

RESUMEN

Tumour-derived exosomes (TEX) are a subset of extracellular vesicles (EVs) present in body fluids of patients with cancer. The role of this exosome subset in melanoma progression has been of interest ever since ex vivo studies of exosomes produced by melanoma cell lines were shown to suppress anti-melanoma immune responses. To study the impact of melanoma-derived exosomes (MTEX) present in patients' plasma on melanoma progression, isolation of MTEX from total plasma exosomes is necessary. We have developed an immunoaffinity-based method for MTEX capture from plasma of melanoma patients. Using mAb 763.74 specific for the CSPG4 epitope uniquely expressed on melanoma cells, we separated MTEX from non-tumour cell-derived exosomes and evaluated the protein cargo of both fractions by quantitative flow cytometry. Melanoma-associated antigens were carried by MTEX but were not detectable in exosomes produced by normal cells. Separation of plasma-derived MTEX from non-MTEX provides an opportunity for future evaluation of MTEX as potential biomarkers of melanoma progression and as surrogates of melanoma in tumour liquid biopsy studies.

17.
Sci Rep ; 7(1): 14684, 2017 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-29089618

RESUMEN

Exosomes, small (30-150 nm) extracellular vesicles (EVs) isolated from plasma of patients with acute myeloid leukemia (AML) carry leukemia-associated antigens and multiple inhibitory molecules. Circulating exosomes can deliver suppressive cargos to immune recipient cells, inhibiting anti-tumor activities. Pre-therapy plasma of refractory/relapsed AML patients contains elevated levels of immunosuppressive exosomes which interfere with anti-leukemia functions of activated immune cells. We show that exosomes isolated from pre-therapy plasma of the AML patients receiving adoptive NK-92 cell therapy block anti-leukemia cytotoxicity of NK-92 cells and other NK-92 cell functions. NK-92 cells do not internalize AML exosomes. Instead, signaling via surface receptors expressed on NK-92 cells, AML exosomes simultaneously deliver multiple inhibitory ligands to the cognate receptors. The signals are processed downstream and activate multiple suppressive pathways in NK-92 cells. AML exosomes reprogram NK-92 cells, interfering with their anti-leukemia functions and reducing the therapeutic potential of adoptive cell transfers. Plasma-derived exosomes interfere with immune cells used for adoptive cell therapy and may limit expected therapeutic benefits of adoptive cell therapy.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Exosomas/metabolismo , Inmunoterapia Adoptiva/métodos , Células Asesinas Naturales/inmunología , Leucemia Mieloide Aguda/terapia , Plasma/metabolismo , Células A549 , Anciano , Anciano de 80 o más Años , Animales , Circulación Sanguínea , Proliferación Celular , Reprogramación Celular , Citotoxicidad Inmunológica , Femenino , Humanos , Tolerancia Inmunológica , Células Asesinas Naturales/trasplante , Leucemia Mieloide Aguda/inmunología , Masculino , Persona de Mediana Edad , Transducción de Señal
18.
Oncoimmunology ; 6(8): e1261243, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28919985

RESUMEN

Tumor-derived exosomes (TEX) are ubiquitously present in the tumor microenvironment and plasma of cancer patients. TEX carry a cargo of multiple stimulatory and inhibitory molecules and deliver them to recipient cells, serving as a communication network for the tumor. The mechanisms TEX use for delivering messages to recipient cells were evaluated using PKH26-labeled TEX produced by cultured human tumor cells, exosomes produced by dendritic cells-derived exosomes (DEX), or exosomes isolated from plasma of cancer patients (EXO). Human T-cell subsets, B cells, NK cells, and monocytes were co-incubated with TEX, DEX, or EXO and binding or internalization of labeled vesicles was evaluated by confocal microscopy and/or Amnis-based flow cytometry. Vesicle-induced Ca2+ influx in recipient T cells was monitored, and TEX-induced inosine production in Treg was determined by mass spectrometry. In contrast to B cells, NK cells or monocytes, conventional T cells did not internalize labeled vesicles. Minimal exosome uptake was only evident in Treg following prolonged co-incubation with TEX. All exosomes induced Ca2+ influx in T cells, with TEX and EXO isolated from cancer patients' plasma delivering the strongest, sustained signaling to Treg. Such sustained signaling resulted in the significant upregulation of the conversion of extracellular ATP to inosine (adenosine metabolite) by Treg, suggesting that TEX signaling could have functional consequences in these recipient cells. Thus, modulation of Treg suppressor functions by TEX is mediated by mechanisms dependent on cell surface signaling and does not require TEX internalization by recipient cells.

19.
Methods Mol Biol ; 1633: 257-265, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28735492

RESUMEN

A method for exosome isolation from human plasma was developed for rapid, high-throughput processing of plasma specimens obtained from patients with cancer. This method removes the bulk of plasma proteins associated with exosomes and can be used for comparative examinations of exosomes and their content in serial specimens of patients' plasma, allowing for monitoring changes in exosome numbers, profiles, and functions in the course of cancer progression or during therapy. The plasma-derived exosomes can be recovered in quantities sufficient for the characterization of their morphology by transmission electron microscopy (TEM), size and concentration by qNano, protein/lipid ratios, nucleic acid extraction, molecular profiling by Western blots or immune arrays, and functional assays.


Asunto(s)
Biomarcadores de Tumor/sangre , Exosomas/metabolismo , Lípidos/sangre , Microscopía Electrónica de Transmisión/métodos , Proteínas de Neoplasias/sangre , Neoplasias/sangre , Plasma/citología , Western Blotting , Fraccionamiento Celular , Exosomas/química , Exosomas/ultraestructura , Humanos , Neoplasias/diagnóstico , Plasma/química
20.
Clin Cancer Res ; 23(16): 4843-4854, 2017 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-28400428

RESUMEN

Purpose: Head and neck cancers (HNCs) often induce profound immunosuppression, which contributes to disease progression and interferes with immune-based therapies. Body fluids of patients with HNC are enriched in exosomes potentially engaged in negative regulation of antitumor immune responses. The presence and content of exosomes derived from plasma of patients with HNC are evaluated for the ability to induce immune dysfunction and influence disease activity.Experimental Design: Exosomes were isolated by size-exclusion chromatography from plasma of 38 patients with HNC and 14 healthy donors. Morphology, size, numbers, and protein and molecular contents of the recovered exosomes were determined. Coculture assays were performed to measure exosome-mediated effects on functions of normal human lymphocyte subsets and natural killer (NK) cells. The results were correlated with disease stage and activity.Results: The presence, quantity, and molecular content of isolated, plasma-derived exosomes discriminated patients with HNC with active disease (AD) from those with no evident disease (NED) after oncologic therapies. Exosomes of patients with AD were significantly more effective than exosomes of patients with NED in inducing apoptosis of CD8+ T cells, suppression of CD4+ T-cell proliferation, and upregulation of regulatory T-cell (Treg) suppressor functions (all at P < 0.05). Exosomes of patients with AD also downregulated NKG2D expression levels in NK cells.Conclusions: Exosomes in plasma of patients with HNC carry immunosuppressive molecules and interfere with functions of immune cells. Exosome-induced immune suppression correlates with disease activity in HNC, suggesting that plasma exosomes could be useful as biomarkers of HNC progression. Clin Cancer Res; 23(16); 4843-54. ©2017 AACR.


Asunto(s)
Exosomas/inmunología , Neoplasias de Cabeza y Cuello/inmunología , Activación de Linfocitos/inmunología , Linfocitos T/inmunología , Adulto , Anciano , Apoptosis/inmunología , Proliferación Celular , Técnicas de Cocultivo , Femenino , Neoplasias de Cabeza y Cuello/sangre , Neoplasias de Cabeza y Cuello/patología , Humanos , Células Asesinas Naturales/inmunología , Masculino , Persona de Mediana Edad , Linfocitos T Reguladores/inmunología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA