Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 6(1): 1145, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37950055

RESUMEN

Education, occupation, and an active lifestyle, comprising enhanced social, physical, and mental components are associated with improved cognitive functions in aged people and may delay the progression of various neurodegenerative diseases including Alzheimer's disease. To investigate this protective effect, 3-month-old APPNL-G-F/NL-G-F mice were exposed to repeated single- or multi-domain cognitive training. Cognitive training was given at the age of 3, 6, & 9 months. Single-domain cognitive training was limited to a spatial navigation task. Multi-domain cognitive training consisted of a spatial navigation task, object recognition, and fear conditioning. At the age of 12 months, behavioral tests were completed for all groups. Then, mice were sacrificed, and their brains were assessed for pathology. APPNL-G-F/NL-G-F mice given multi-domain cognitive training compared to APPNL-G-F/NL-G-F control group showed an improvement in cognitive functions, reductions in amyloid load and microgliosis, and a preservation of cholinergic function. Additionally, multi-domain cognitive training improved anxiety in APPNL-G-F/NL-G-F mice as evidenced by measuring thigmotaxis behavior in the Morris water maze. There were mild reductions in microgliosis in the brain of APPNL-G-F/NL-G-F mice with single-domain cognitive training. These findings provide causal evidence for the potential of certain forms of cognitive training to mitigate the cognitive deficits in Alzheimer disease.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Ratones , Animales , Anciano , Lactante , Enfermedad de Alzheimer/prevención & control , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides , Precursor de Proteína beta-Amiloide , Entrenamiento Cognitivo , Ratones Transgénicos , Disfunción Cognitiva/etiología , Disfunción Cognitiva/prevención & control , Ansiedad/etiología , Ansiedad/prevención & control , Proteínas Amiloidogénicas
2.
Front Behav Neurosci ; 17: 1187976, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37358968

RESUMEN

The amygdala has been implicated in a variety of functions linked to emotions. One popular view is that the amygdala modulates consolidation in other brain systems thought to be mainly involved in learning and memory processes. This series of experiments represents a further exploration into the role of the amygdala in memory modulation and consolidation. One interesting line of research has shown that drugs of abuse, like amphetamine, produce dendritic changes in select brain regions and these changes are thought to be equivalent to a usurping of normal plasticity processes. We were interested in the possibility that this modulation of plasticity processes would be dependent on interactions with the amygdala. According to the modulation view of amygdala function, amphetamine would activate modulation mechanisms in the amygdala that would alter plasticity processes in other brain regions. If the amygdala was rendered dysfunctional, these effects should not occur. Accordingly, this series of experiments evaluated the effects of extensive neurotoxic amygdala damage on amphetamine-induced dendritic changes in the nucleus accumbens and prefrontal cortex. The results showed that rats with large lesions of the amygdala showed the normal pattern of dendritic changes in these brain regions. This pattern of results suggests that the action of not all memory modulators, activated during emotional events, require the amygdala to impact memory.

3.
Sci Rep ; 13(1): 7748, 2023 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-37173349

RESUMEN

Prenatal experiences can influence offspring physiology and behaviour through the lifespan. Various forms of prenatal stress impair adult learning and memory function and can lead to increased occurrence of anxiety and depression. Clinical work suggests that prenatal stress and maternal depression lead to similar outcomes in children and adolescents, however the long-term effects of maternal depression are less established, particularly in well controlled animal models. Social isolation is common in depressed individuals and during the recent COVID-19 pandemic. Accordingly, for this study we were interested in the effects of maternal stress induced via social isolation on adult offspring cognitive functions including spatial, stimulus-response, and emotional learning and memory that are mediated by different networks centered on the hippocampus, dorsal striatum, and amygdala, respectively. Tasks included a discriminative contextual fear conditioning task and cue-place water task. Pregnant dams in the social isolation group were single housed prior to and throughout gestation. Once offspring reached adulthood the male offspring were trained on a contextual fear conditioning task in which rats were trained to associate one of two contexts with an aversive stimulus and the opposing context remained neutral. Afterwards a cue-place water task was performed during which they were required to navigate to both a visible and invisible platform. Fear conditioning results revealed that the adult offspring of socially isolated mothers, but not controls, were impaired in associating a specific context with a fear-inducing stimulus as assessed by conditioned freezing and avoidance. Results from the water task indicate that adult offspring of mothers that were socially isolated showed place learning deficits but not stimulus-response habit learning on the same task. These cognitive impairments, in the offspring of socially isolated dams, occurred in the absence of maternal elevated stress hormone levels, anxiety, or altered mothering. Some evidence suggested that maternal blood-glucose levels were altered particularly during gestation. Our results provide further support for the idea that learning and memory networks, centered on the amygdala and hippocampus are particularly susceptible to the negative impacts of maternal social isolation and these effects can occur without elevated glucocorticoid levels associated with other forms of prenatal stress.


Asunto(s)
COVID-19 , Efectos Tardíos de la Exposición Prenatal , Embarazo , Femenino , Ratas , Masculino , Humanos , Animales , Roedores , Hijos Adultos , Pandemias , Cognición , Aislamiento Social
4.
ACS Omega ; 7(44): 40446-40455, 2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36385874

RESUMEN

Currently, effects of nanomaterials and their ions, such as silver nanoparticles (Ag NPs) and silver ions (Ag+), on living organisms are not yet fully understood. One of the vital questions is whether nanomaterials have distinctive effects on living organisms from any other conventional chemicals (e.g., their ions), owing to their unique physicochemical properties. Due to various experimental protocols, studies of this crucial question have been inconclusive, which hinders rational design of effective regulatory guidelines for safely handling NPs. In this study, we chronically exposed early developing zebrafish embryos (cleavage-stage, 2 hours post-fertilization, hpf) to a dilution series of Ag+ (0-1.2 µM) in egg water (1 mM NaCl, solubility of Ag+ = 0.18 µM) until 120 hpf. We systematically investigated effects of Ag+ on developing embryos and compared them with our previous studies of effects of purified Ag NPs on developing embryos. We found the concentration- and time-dependent effects of Ag+ on embryonic development, and only half of the embryos developed normally after being exposed to 0.25 µM (27 µg/L) Ag+ until 120 hpf. As the Ag+ concentration increases, the number of embryos that developed normally decreases, while the number of embryos that became dead increases. The number of abnormally developing embryos increases as the Ag+ concentration increases from 0 to 0.3 µM and then decreases as the concentration increases from 0.3 to 1.2 µM because the number of embryos that became dead increases. The concentration-dependent phenotypes were observed, showing fin fold abnormality, tail and spinal cord flexure, and yolk sac edema at low Ag+ concentrations (≤0.2 µM) and head and eye abnormalities along with fin fold abnormality, tail and spinal cord flexure, and yolk sac edema at high concentrations (≥0.3 µM). Severities of phenotypes and the number of abnormally developing embryos were far less than those observed in Ag NPs. The results also show concentration-dependent effects on heart rates and hatching rates of developing embryos, attributing to the dose-dependent abnormally developing embryos. In summary, the results show that Ag+ and Ag NPs have distinctive toxic effects on early developing embryos, and toxic effects of Ag+ are far less severe than those of Ag NPs, which further demonstrates that the toxicity of Ag NPs toward embryonic development is attributed to the NPs themselves and their unique physicochemical properties but not the release of Ag+ from the Ag NPs.

5.
Physiol Rep ; 10(19): e15489, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36200315

RESUMEN

Proximal tubule fructose metabolism is key to fructose-induced hypertension, but the roles of sex and stress are unclear. We hypothesized that females are resistant to the salt-sensitive hypertension caused by low amounts of dietary fructose compared to males and that the magnitude of the increase in blood pressure (BP) depends, in part, on amplification of the stress response of renal sympathetic nerves. We measured systolic BP (SBP) in rats fed high salt with either no sugar (HS), 20% glucose (GHS) or 20% fructose (FHS) in the drinking water for 7-8 days. FHS increased SBP in both males (Δ22 ± 9 mmHg; p < 0.046) and females (Δ16 ± 3 mmHg; p < 0.0007), while neither GHS nor HS alone induced changes in SBP in either sex. The FHS-induced increase in SBP as measured by telemetry in the absence of added stress (8 ± 2 mmHg) was significantly lower than that measured by plethysmography (24 ± 5 mmHg) (p < 0.014). However, when BP was measured by telemetry simulating the stress of plethysmography, the increase in SBP was significantly greater (15 ± 3 mmHg) than under low stress (8 ± 1 mmHg) (p < 0.014). Moderate-stress also increased telemetric diastolic (p < 0.006) and mean BP (p < 0.006) compared to low-stress in FHS-fed animals. Norepinephrine excretion was greater in FHS-fed rats than HS-fed animals (Male: 6.4 ± 1.7 vs.1.8 ± 0.4 nmole/kg/day; p < 0.02. Female 54 ± 18 vs. 1.2 ± 0.6; p < 0.02). We conclude that fructose-induced salt-sensitive hypertension is similar in males and females unlike other forms of hypertension, and the increase in blood pressure depends in part on an augmented response of the sympathetic nervous system to stress.


Asunto(s)
Agua Potable , Hipertensión , Animales , Presión Sanguínea/fisiología , Femenino , Fructosa/efectos adversos , Glucosa/farmacología , Hipertensión/inducido químicamente , Hipertensión/metabolismo , Masculino , Norepinefrina/farmacología , Ratas , Ratas Sprague-Dawley , Cloruro de Sodio/farmacología , Cloruro de Sodio Dietético/efectos adversos
6.
Am J Physiol Renal Physiol ; 321(3): F369-F377, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34308669

RESUMEN

Dahl salt-sensitive (SS) rat kidneys produce less nitric oxide (NO) than those of salt-resistant (SR) rats. Thick ascending limb (TAL) NO synthase 3 (NOS3) is a major source of renal NO, and luminal flow enhances its activity. We hypothesized that flow-induced NO is reduced in TALs from SS rats primarily due to NOS uncoupling and diminished NOS3 expression rather than scavenging. Rats were fed normal-salt (NS) or high-salt (HS) diets. We measured flow-induced NO and superoxide in perfused TALs and performed Western blots of renal outer medullas. For rats on NS, flow-induced NO was 35 ± 6 arbitrary units (AU)/min in TALs from SR rats but only 11 ± 2 AU/min in TALs from SS (P < 0.008). The superoxide scavenger tempol decreased the difference in flow-induced NO between strains by about 36% (P < 0.020). The NOS inhibitor N-nitro-l-arginine methyl ester (l-NAME) decreased flow-induced superoxide by 36 ± 8% in TALs from SS rats (P < 0.02) but had no effect in TALs from SR rats. NOS3 expression was not different between strains on NS. For rats on HS, the difference in flow-induced NO between strains was enhanced (SR rats: 44 ± 10 vs. SS: 9 ± 2 AU/min, P < 0.005). Tempol decreased the difference in flow-induced NO between strains by about 37% (P < 0.012). l-NAME did not significantly reduce flow-induced superoxide in either strain. HS increased NOS3 expression in TALs from SR rats but not in TALs from SS rats (P < 0.003). We conclude that 1) on NS, flow-induced NO is diminished in TALs from SS rats mainly due to NOS3 uncoupling such that it produces superoxide and 2) on HS, the difference is enhanced due to failure of TALs from SS rats to increase NOS3 expression.NEW & NOTEWORTHY The Dahl rat has been used extensively to study the causes and effects of salt-sensitive hypertension. Our study suggests that more complex processes other than simple scavenging of nitric oxide (NO) by superoxide lead to less NO production in thick ascending limbs of the Dahl salt-sensitive rat. The predominant mechanism involved depends on dietary salt. Impaired flow-induced NO production in thick ascending limbs most likely contributes to the Na+ retention associated with salt-sensitive hypertension.


Asunto(s)
Asa de la Nefrona/metabolismo , Óxido Nítrico/metabolismo , Cloruro de Sodio Dietético/metabolismo , Animales , Arginina/análogos & derivados , Arginina/farmacología , Hipertensión/fisiopatología , Masculino , Ratas Endogámicas Dahl , Cloruro de Sodio/metabolismo , Superóxidos/metabolismo
7.
Neurobiol Learn Mem ; 180: 107408, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33609742

RESUMEN

The present experiments investigated the effects of repeated amphetamine exposure on neural networks mediating different forms of learning and memory. Different components of these networks were assessed using various functional assays. The hypothesis was that abnormal dendritic changes in nucleus accumbens, medial prefrontal cortex, and hippocampus mediated by repeated amphetamine exposure would produce impairments on forms of learning and memory dependent on neural circuits relying on these brain systems, and have little or no effect on other forms of learning not dependent on these networks. Surprisingly, the results showed that many of the dendritic changes normally found in the nucleus accumbens, prefrontal cortex, and hippocampus following repeated amphetamine exposure were reversed back to control levels following extensive multi-domain cognitive training. Learning and memory functions associated with different neural networks also appeared normal except in one case. A neural network that includes, but is not limited to, the basolateral amygdala and nucleus accumbens was dysfunctional in rats repeatedly exposed to amphetamine despite the reversal of the majority of dendritic changes in the nucleus accumbens following cognitive training. Importantly, an increase in spine density that normally occurs in these brain regions following repeated amphetamine exposure remained following extensive cognitive training, particularly in the nucleus accumbens.


Asunto(s)
Anfetamina/farmacología , Estimulantes del Sistema Nervioso Central/farmacología , Dendritas/efectos de los fármacos , Hipocampo/efectos de los fármacos , Memoria/efectos de los fármacos , Núcleo Accumbens/efectos de los fármacos , Corteza Prefrontal/efectos de los fármacos , Animales , Complejo Nuclear Basolateral/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Condicionamiento Clásico/efectos de los fármacos , Espinas Dendríticas/efectos de los fármacos , Miedo , Hipocampo/patología , Aprendizaje/efectos de los fármacos , Aprendizaje por Laberinto/efectos de los fármacos , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/patología , Plasticidad Neuronal/efectos de los fármacos , Núcleo Accumbens/patología , Corteza Prefrontal/patología , Ratas
8.
Am J Physiol Renal Physiol ; 318(6): F1513-F1519, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32390510

RESUMEN

Angiotensin II (ANG II) stimulates proximal nephron transport via activation of classical protein kinase C (PKC) isoforms. Acute fructose treatment stimulates PKC and dietary fructose enhances ANG II's ability to stimulate Na+ transport, but the mechanisms are unclear. We hypothesized that dietary fructose enhances ANG II's ability to stimulate renal proximal tubule Na+ reabsorption by augmenting PKC-α activation and increases in intracellular Ca2+. We measured total and isoform-specific PKC activity, basal and ANG II-stimulated oxygen consumption, a surrogate of Na+ reabsorption, and intracellular Ca2+ in proximal tubules from rats given either 20% fructose in their drinking water (fructose group) or tap water (control group). Total PKC activity was measured by ELISA. PKC-α, PKC-ß, and PKC-γ activities were assessed by measuring particulate-to-soluble ratios. Intracelluar Ca2+ was measured using fura 2. ANG II stimulated total PKC activity by 53 ± 15% in the fructose group but not in the control group (-15 ± 11%, P < 0.002). ANG II stimulated PKC-α by 0.134 ± 0.026 but not in the control group (-0.002 ± 0.020, P < 0.002). ANG II increased PKC-γ activity by 0.008 ± 0.003 in the fructose group but not in the control group (P < 0.046). ANG II did not stimulate PKC-ß in either group. ANG II increased Na+ transport by 454 ± 87 nmol·min-1·mg protein-1 in fructose group, and the PKC-α/ß inhibitor Gö6976 blocked this increase (-96 ± 205 nmol·min-1·mg protein-1, P < 0.045). ANG II increased intracellular Ca2+ by 148 ± 53 nM in the fructose group but only by 43 ± 10 nM in the control group (P < 0.035). The intracellular Ca2+ chelator BAPTA blocked the ANG II-induced increase in Na+ transport in the fructose group. We concluded that dietary fructose enhances ANG II's ability to stimulate renal proximal tubule Na+ reabsorption by augmenting PKC-α activation via elevated increases in intacellular Ca2+.


Asunto(s)
Angiotensina II/farmacología , Azúcares de la Dieta/administración & dosificación , Fructosa/administración & dosificación , Túbulos Renales Proximales/efectos de los fármacos , Proteína Quinasa C-alfa/metabolismo , Reabsorción Renal/efectos de los fármacos , Sodio/metabolismo , Animales , Calcio/metabolismo , Activación Enzimática , Túbulos Renales Proximales/enzimología , Masculino , Ratas Sprague-Dawley , Factores de Tiempo
9.
ACS Omega ; 5(3): 1625-1633, 2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-32010837

RESUMEN

Multidrug membrane transporters can extrude a wide range of substrates, which cause multidrug resistance and ineffective treatment of diseases. In this study, we used three different sized antibiotic drug nanocarriers to study their size-dependent inhibitory effects against Bacillus subtilis. We functionalized 2.4 ± 0.7, 13.0 ± 3.1, and 92.6 ± 4.4 nm silver nanoparticles (Ag NPs) with a monolayer of 11-amino-1-undecanethiol and covalently linked them with antibiotics (ofloxacin, Oflx). The labeling ratios of antibiotics with NPs are 8.6 × 102, 9.4 × 103, and 6.5 × 105 Oflx molecules per NP, respectively. We designed cell culture medium in which both BmrA and ΔBmrA cells grew and functioned normally while ensuring the stabilities of nanocarriers (nonaggregation). These approaches allow us to quantitatively study the dependence of their inhibitory effect against two isogenic strains of B. subtilis, WT (normal expression of BmrA) and ΔBmrA (deletion of bmrA), upon the NP size, antibiotic dose, and BmrA expression. Our results show that the inhibitory effects of nanocarriers highly depend on NP size and antibiotic dose. The same amount of Oflx on 2.4 ± 0.7, 13.0 ± 3.1, and 92.6 ± 4.4 nm nanocarriers shows the 3× lower, nearly the same, and 10× higher inhibitory effects than that of free Oflx, against both WT and ΔBmrA, respectively. Control experiments of the respective sized AgMUNH2 NPs (absence of Oflx) show insignificant inhibitory effects toward both strains. Taken together, the results show multiple factors, such as labeling ratios, multivalent effects, and pharmacodynamics (Oflx localization and distribution), which might play the roles in the size-dependent inhibitory effects on the growth of both WT and ΔBmrA strains. Interestingly, the inhibitory effects of nanocarriers are independent of the expression of BmrA, which could be attributed to the higher efflux of nanocarriers by other membrane transporters in both strains.

10.
Hypertension ; 75(2): 431-438, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31865796

RESUMEN

Mechanical stretch raises intracellular Ca (Cai) in many cell types. Luminal flow-derived stretch stimulates O2- production by thick ascending limbs (THALs). Renal O2- is greater in Dahl salt-sensitive (SS) than salt-resistant (SR) rats. We hypothesized that mechanical stretch stimulates Ca influx via TRPV4 (transient receptor potential vanilloid type 4) which in turn raises Cai in THALs; these increases in Cai are necessary for stretch to augment O2- production; and stretch-stimulated, and therefore flow-induced, O2- production is enhanced in SS compared with SR THALs due to elevated Ca influx and increased Cai. Cai and O2- were measured in SS and SR THALs from rats on normal salt using Fura2-acetoxymethyl ester and dihydroethidium, respectively. Stretch raised Cai in SS by 270.4±48.9 nmol/L and by 123.6±27.0 nmol/L in SR THALs (P<0.02). Removing extracellular Ca eliminated the increases and differences in Cai between strains. Knocking down TRPV4 in SS THALs reduced stretch-induced Cai to SR levels (SS: 92.0±15.9 nmol/L; SR: 123.6±27.0 nmol/L). RN1734, a TRPV4 inhibitor, blunted stretch-elevated Cai by ≈75% and ≈66% in SS (P<0.03) and SR (P<0.04), respectively. Stretch augmented O2- production by 58.6±10.2 arbitrary fluorescent units/min in SS and by 24.4±2.6 arbitrary fluorescent units/min in SR THALs (P<0.05). Removal of extracellular Ca blunted stretch-induced increases in O2- and eliminated differences between strains. RN1734 reduced stretch-induced O2- by ≈70% in SS (P<0.005) and ≈60% in SR (P<0.01). Conclusions are as follows: (1) stretch activates TRPV4, which raises Cai in THALs; (2) the increase in Cai stimulates O2- production; and (3) stretch-induced O2- production is enhanced in SS THALs due to greater increases in Cai.


Asunto(s)
Calcio/metabolismo , Hipertensión/genética , Líquido Intracelular/metabolismo , Asa de la Nefrona/metabolismo , Oxígeno/metabolismo , Canales Catiónicos TRPV/metabolismo , Animales , Modelos Animales de Enfermedad , Hipertensión/metabolismo , Masculino , Ratas , Ratas Endogámicas Dahl , Cloruro de Sodio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA