Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 2(3): 1089-1096, 2017 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-31457491

RESUMEN

As a p-type multifunctional semiconductor, CuSe nanostructures show great promise in optoelectronic, sensing, and photocatalytic fields. Although great progress has been achieved, controllable synthesis of CuSe nanosheets (NSs) with a desirable spacial orientation and open frameworks remains a challenge, and their use in supercapacitors (SCs) has not been explored. Herein, a highly vertically oriented and interpenetrating CuSe NS film with open channels is deposited on an Au-coated polyethylene terephthalate substrate. Such CuSe NS films exhibit high specific capacitance (209 F g-1) and can be used as a carbon black- and binder-free electrode to construct flexible, symmetric all-solid-state SCs, using polyvinyl alcohol-LiCl gel as the solid electrolyte. A device fabricated with such CuSe NS films exhibits high volumetric specific capacitance (30.17 mF cm-3), good cycling stability, excellent flexibility, and desirable mechanical stability. The excellent performance of such devices results from the vertically oriented and interpenetrating configuration of CuSe NS building blocks, which can increase the available surface and facilitate the diffusion of electrolyte ions. Moreover, as a prototype for application, three such solid devices in series can be used to light up a red light-emitting diode.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA