Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Biotechnol J ; 22(7): 1848-1866, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38391124

RESUMEN

Although the regulatory mechanisms of dark and light-induced plant morphogenesis have been broadly investigated, the biological process in peanuts has not been systematically explored on single-cell resolution. Herein, 10 cell clusters were characterized using scRNA-seq-identified marker genes, based on 13 409 and 11 296 single cells from 1-week-old peanut seedling leaves grown under dark and light conditions. 6104 genes and 50 transcription factors (TFs) displayed significant expression patterns in distinct cell clusters, which provided gene resources for profiling dark/light-induced candidate genes. Further pseudo-time trajectory and cell cycle evidence supported that dark repressed the cell division and perturbed normal cell cycle, especially the PORA abundances correlated with 11 TFs highly enriched in mesophyll to restrict the chlorophyllide synthesis. Additionally, light repressed the epidermis cell developmental trajectory extending by inhibiting the growth hormone pathway, and 21 TFs probably contributed to the different genes transcriptional dynamic. Eventually, peanut AHL17 was identified from the profile of differentially expressed TFs, which encoded protein located in the nucleus promoted leaf epidermal cell enlargement when ectopically overexpressed in Arabidopsis through the regulatory phytohormone pathway. Overall, our study presents the different gene atlases in peanut etiolated and green seedlings, providing novel biological insights to elucidate light-induced leaf cell development at the single-cell level.


Asunto(s)
Arachis , Regulación de la Expresión Génica de las Plantas , Luz , Hojas de la Planta , Plantones , Arachis/genética , Arachis/metabolismo , Arachis/crecimiento & desarrollo , Arachis/efectos de la radiación , Hojas de la Planta/genética , Hojas de la Planta/efectos de la radiación , Hojas de la Planta/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Plantones/genética , Plantones/efectos de la radiación , Plantones/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Oscuridad , Perfilación de la Expresión Génica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Análisis de Expresión Génica de una Sola Célula
2.
Nat Genet ; 56(3): 530-540, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38378864

RESUMEN

Peanut (Arachis hypogaea L.) is an important allotetraploid oil and food legume crop. China is one of the world's largest peanut producers and consumers. However, genomic variations underlying the migration and divergence of peanuts in China remain unclear. Here we reported a genome-wide variation map based on the resequencing of 390 peanut accessions, suggesting that peanuts might have been introduced into southern and northern China separately, forming two cultivation centers. Selective sweep analysis highlights asymmetric selection between the two subgenomes during peanut improvement. A classical pedigree from South China offers a context for the examination of the impact of artificial selection on peanut genome. Genome-wide association studies identified 22,309 significant associations with 28 agronomic traits, including candidate genes for plant architecture and oil biosynthesis. Our findings shed light on peanut migration and diversity in China and provide valuable genomic resources for peanut improvement.


Asunto(s)
Arachis , Estudio de Asociación del Genoma Completo , Arachis/genética , Mapeo Cromosómico , Fenotipo , Genómica , Genoma de Planta/genética
3.
Int J Mol Sci ; 25(3)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38338728

RESUMEN

Plant FLOWERING LOCUS T-Like (FTL) genes often redundantly duplicate on chromosomes and functionally diverge to modulate reproductive traits. Rice harbors thirteen FTL genes, the functions of which are still not clear, except for the Hd3a and RFT genes. Here, we identified the molecular detail of OsFTL12 in rice reproductive stage. OsFTL12 encoding protein contained PEBP domain and localized into the nucleus, which transcripts specifically expressed in the shoot and leaf blade with high abundance. Further GUS-staining results show the OsFTL12 promoter activity highly expressed in the leaf and stem. OsFTL12 knock-out concurrently exhibited early flowering phenotype under the short- and long-day conditions as compared with wild-type and over-expression plants, which independently regulates flowering without an involved Hd1/Hd3a and Ehd1/RFT pathway. Further, an AT-hook protein OsATH1 was identified to act as upstream regulator of OsFTL12, as the knock-out OsATH1 elevated the OsFTL12 expression by modifying Histone H3 acetylation abundance. According to the dissection of OsFTL12 molecular functions, our study expanded the roles intellectual function of OsFTL12 in the mediating of a rice heading date.


Asunto(s)
Flores , Oryza , Flores/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Fotoperiodo , Etanolaminas/metabolismo , Regulación de la Expresión Génica de las Plantas
4.
Sci Total Environ ; 915: 170112, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38232827

RESUMEN

Peanut bacterial wilt (PBW) caused by the pathogen Ralstonia solanacearum severely affects the growth and yield potential of peanut crop. In this study, we synthesized silica nanoparticles (SiO2 NPs), a prospective efficient management approach to control PBW, and conducted a hydroponic experiment to investigate the effects of different SiO2 NPs treatments (i.e., 0, 100, and 500 mg L-1 as NP0, NP100, and NP500, respectively) on promoting plant growth and resistance to R. solanacearum. Results indicated that the disease indices of NP100 and NP500 decreased by 51.5 % and 55.4 % as compared with NP0 under R. solanacearum inoculation, respectively, while the fresh and dry weights and shoot length of NP100 and NP500 increased by 7.62-42.05 %, 9.45-32.06 %, and 2.37-17.83 %, respectively. Furthermore, SiO2 NPs induced an improvement in physio-biochemical enzymes (superoxide dismutase, peroxidase, catalase, ascorbate peroxidase, and lipoxygenase) which eliminated the excess production of hydrogen peroxide, superoxide anions, and malondialdehyde to alleviate PBW stress. Notably, the targeted metabolomic analysis indicated that SiO2 NPs enhanced salicylic acid (SA) contents, which involved the induction of systemic acquired resistance (SAR). Moreover, the transcriptomic analysis revealed that SiO2 NPs modulated the expression of multiple transcription factors (TFs) involved in the hormone pathway, such as AHLs, and the identification of hormone pathways related to plant defense responses, such as the SA pathway, which activated SA-dependent defense mechanisms. Meanwhile, the up-regulated expression of the SA-metabolism gene, salicylate carboxymethyltransferase (SAMT), initiated SAR to promote PBW resistance. Overall, our findings revealed that SiO2 NPs, functioning as a plant elicitor, could effectively modulate physiological enzyme activities and enhance SA contents through the regulation of SA-metabolism genes to confer the PBW resistance in peanuts, which highlighted the potential of SiO2 NPs for sustainable agricultural practices.


Asunto(s)
Arachis , Dióxido de Silicio , Arachis/metabolismo , Estudios Prospectivos , Plantas/metabolismo , Ácido Salicílico , Hormonas , Enfermedades de las Plantas/microbiología
5.
Adv Biol (Weinh) ; 8(1): e2300410, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37828417

RESUMEN

The peanut is an important worldwide cash-crop for edible oil and protein. However, the kinetic mechanisms that determine gene expression and chromatin accessibility during leaf development in peanut represented allotetraploid leguminous crops are poorly understood at single-cell resolution. Here, a single-nucleus atlas of peanut leaves is developed by simultaneously profiling the transcriptome and chromatin accessibility in the same individual-cell using fluorescence-activated sorted single-nuclei. In total, 5930 cells with 50 890 expressed genes are classified into 18 cell-clusters, and 5315 chromatin fragments are enriched with 26 083 target genes in the chromatin accessible landscape. The developmental trajectory analysis reveals the involvement of the ethylene-AP2 module in leaf cell differentiation, and cell-cycle analysis demonstrated that genome replication featured in distinct cell-types with circadian rhythms transcription factors (TFs). Furthermore, dual-omics illustrates that the fatty acid pathway modulates epidermal-guard cells differentiation and providescritical TFs interaction networks for understanding mesophyll development, and the cytokinin module (LHY/LOG) that regulates vascular growth. Additionally, an AT-hook protein AhAHL11 is identified that promotes leaf area expansion by modulating the auxin content increase. In summary, the simultaneous profiling of transcription and chromatin accessibility landscapes using snRNA/ATAC-seq provides novel biological insights into the dynamic processes of peanut leaf cell development at the cellular level.


Asunto(s)
Fabaceae , Transcriptoma , Arachis/genética , Arachis/metabolismo , Cromatina/genética , Cromatina/metabolismo , Fabaceae/genética , Hojas de la Planta/genética , Hojas de la Planta/metabolismo
6.
Cells ; 12(18)2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37759528

RESUMEN

Fatty Acid Desaturase 2 (FAD2) controls the conversion of oleic acids into linoleic acids. Mutations in FAD2 not only increase the high-oleic content, but also repress the leaf growth. However, the mechanism by which FAD2 regulates the growth pathway has not been elucidated in peanut leaves with single-cell resolution. In this study, we isolated fad2 mutant leaf protoplast cells to perform single-cell RNA sequencing. Approximately 24,988 individual cells with 10,249 expressed genes were classified into five major cell types. A comparative analysis of 3495 differentially expressed genes (DEGs) in distinct cell types demonstrated that fad2 inhibited the expression of the cytokinin synthesis gene LOG in vascular cells, thereby repressing leaf growth. Further, pseudo-time trajectory analysis indicated that fad2 repressed leaf cell differentiation, and cell-cycle evidence displayed that fad2 perturbed the normal cell cycle to induce the majority of cells to drop into the S phase. Additionally, important transcription factors were filtered from the DEG profiles that connected the network involved in high-oleic acid accumulation (WRKY6), activated the hormone pathway (WRKY23, ERF109), and potentially regulated leaf growth (ERF6, MYB102, WRKY30). Collectively, our study describes different gene atlases in high-oleic and normal peanut seedling leaves, providing novel biological insights to elucidate the molecular mechanism of the high-oleic peanut-associated agronomic trait at the single-cell level.


Asunto(s)
Arachis , Ácido Graso Desaturasas , Arachis/genética , Arachis/metabolismo , Ácido Graso Desaturasas/genética , Ácido Graso Desaturasas/metabolismo , Análisis de Expresión Génica de una Sola Célula , Mutación/genética , Ácido Oléico/metabolismo
7.
Front Plant Sci ; 14: 1184058, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37416889

RESUMEN

The 14-3-3 protein is a kind of evolutionary ubiquitous protein family highly conserved in eukaryotes. Initially, 14-3-3 proteins were reported in mammalian nervous tissues, but in the last decade, their role in various metabolic pathways in plants established the importance of 14-3-3 proteins. In the present study, a total of 22 14-3-3 genes, also called general regulatory factors (GRF), were identified in the peanut (Arachis hypogaea) genome, out of which 12 belonged to the ε group, whereas 10 of them belonged to the non- ε-group. Tissue-specific expression of identified 14-3-3 genes were studied using transcriptome analysis. The peanut AhGRFi gene was cloned and transformed into Arabidopsis thaliana. The investigation of subcellular localization indicated that AhGRFi is localized in the cytoplasm. Overexpression of the AhGRFi gene in transgenic Arabidopsis showed that under exogenous 1-naphthaleneacetic acid (NAA) treatment, root growth inhibition in transgenic plants was enhanced. Further analysis indicated that the expression of auxin-responsive genes IAA3, IAA7, IAA17, and SAUR-AC1 was upregulated and GH3.2 and GH3.3 were downregulated in transgenic plants, but the expression of GH3.2, GH3.3, and SAUR-AC1 showed opposite trends of change under NAA treatment. These results suggest that AhGRFi may be involved in auxin signaling during seedling root development. An in-depth study of the molecular mechanism of this process remains to be further explored.

8.
Int J Mol Sci ; 24(4)2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36834682

RESUMEN

Silicon (Si) has been shown to promote peanut growth and yield, but whether Si can enhance the resistance against peanut bacterial wilt (PBW) caused by Ralstonia solanacearum, identified as a soil-borne pathogen, is still unclear. A question regarding whether Si enhances the resistance of PBW is still unclear. Here, an in vitro R. solanacearum inoculation experiment was conducted to study the effects of Si application on the disease severity and phenotype of peanuts, as well as the microbial ecology of the rhizosphere. Results revealed that Si treatment significantly reduced the disease rate, with a decrement PBW severity of 37.50% as compared to non-Si treatment. The soil available Si (ASi) significantly increased by 13.62-44.87%, and catalase activity improved by 3.01-3.10%, which displayed obvious discrimination between non-Si and Si treatments. Furthermore, the rhizosphere soil bacterial community structures and metabolite profiles dramatically changed under Si treatment. Three significantly changed bacterial taxa were observed, which showed significant abundance under Si treatment, whereas the genus Ralstonia genus was significantly suppressed by Si. Similarly, nine differential metabolites were identified to involve into unsaturated fatty acids via a biosynthesis pathway. Significant correlations were also displayed between soil physiochemical properties and enzymes, the bacterial community, and the differential metabolites by pairwise comparisons. Overall, this study reports that Si application mediated the evolution of soil physicochemical properties, the bacterial community, and metabolite profiles in the soil rhizosphere, which significantly affects the colonization of the Ralstonia genus and provides a new theoretical basis for Si application in PBW prevention.


Asunto(s)
Arachis , Ralstonia solanacearum , Arachis/genética , Ralstonia solanacearum/metabolismo , Silicio/metabolismo , Suelo/química , Rizosfera , Bacterias/metabolismo , Enfermedades de las Plantas/microbiología
9.
Front Genet ; 13: 945015, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36092943

RESUMEN

To evaluate the application potential of high-density SNPs in rice distinctness, uniformity, and stability (DUS) testing, we screened 37,929 SNP loci distributed on 12 rice chromosomes based on whole-genome resequencing of 122 rice accessions. These SNP loci were used to analyze the DUS testing of rice varieties based on the correlation between the molecular and phenotypic distances of varieties according to UPOV option 2. The results showed that statistical algorithms and the number of phenotypic traits and SNP loci all affected the correlation between the molecular and phenotypic distances of rice varieties. Relative to the other nine algorithms, the Jaccard similarity algorithm had the highest correlation of 0.6587. Both the number of SNPs and the number of phenotypes had a ceiling effect on the correlation between the molecular and phenotypic distances of varieties, and the ceiling effect of the number of SNP loci was more obvious. To overcome the correlation bottleneck, we used the genome-wide prediction method to predict 30 phenotypic traits and found that the prediction accuracy of some traits, such as the basal sheath anthocyanin color, glume length, and intensity of the green color of the leaf blade, was very low. In combination with group comparison analysis, we found that the key to overcoming the ceiling effect of correlation was to improve the resolution of traits with low predictive values. In addition, we also performed distinctness testing on rice varieties by using the molecular distance and phenotypic distance, and we found that there were large differences between the two methods, indicating that UPOV option 2 alone cannot replace the traditional phenotypic DUS testing. However, genotype and phenotype analysis together can increase the efficiency of DUS testing.

10.
Front Plant Sci ; 13: 893278, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35592563

RESUMEN

The far-red-impaired response 1 (FAR1) transcription family were initially identified as important factors for phytochrome A (phyA)-mediated far-red light signaling in Arabidopsis; they play crucial roles in controlling the growth and development of plants. The reported reference genome sequences of Arachis, including A. duranensis, A. ipaensis, A. monticola, and A. hypogaea, and its related species Glycine max provide an opportunity to systematically perform a genome-wide identification of FAR1 homologous genes and investigate expression patterns of these members in peanut species. Here, a total of 650 FAR1 genes were identified from four Aarchis and its closely related species G. max. Of the studied species, A. hypogaea contained the most (246) AhFAR1 genes, which can be classified into three subgroups based on phylogenic relationships. The synonymous (Ks) and non-synonymous (Ka) substitution rates, phylogenetic relationship and synteny analysis of the FAR1 family provided deep insight into polyploidization, evolution and domestication of peanut AhFAR1 genes. The transcriptome data showed that the AhFAR1 genes exhibited distinct tissue- and stage-specific expression patterns in peanut. Three candidate genes including Ahy_A10g049543, Ahy_A06g026579, and Ahy_A10g048401, specifically expressed in peg and pod, might participate in pod development in the peanut. The quantitative real-time PCR (qRT-PCR) analyses confirmed that the three selected genes were highly and specifically expressed in the peg and pod. This study systematically analyzed gene structure, evolutionary characteristics and expression patterns of FAR1 gene family, which will provide a foundation for the study of genetic and biological function in the future.

11.
Food Res Int ; 155: 110993, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35400414

RESUMEN

High oleic acid (OA) peanut seed (PS), contains a higher ratio of oleic acid (C18:1) compared to general PS, which is favored by consumers due to its health benefits. However, comprehensive lipid metabolite profiles of high-OA PS, once they have been processed via domestic cooking methods, have never been produced. To establish a scientific guide for the selection of the most appropriate processing method for high-OA PS, lipidomics was performed to identify 706 lipid metabolites in high-OA PS following boiling, baking and frying, between the three groups, 75, 175 and 242 lipid metabolites were differentially expressed respectively. Additionally, 46 glycerolipids with C18:1 molecular were observed in the lipid profiles of the treatment groups compared to the raw sample. Further evaluation of seven lipid peroxides and six antioxidant status of each testing group suggested that boiled PS retained the highest levels of lipids and antioxidant activity. Following these findings, boiling appears to be an appropriate processing method when attempting to conserve the beneficial substances found in the PS. Finally, the levels of major free fatty acids present in high-OA PS, were jointly quantified by conventional methods (GC-MS) and lipidomic analysis. FA/C16:0 levels were similar, FA/C18:0, FA/C18:1 displayed opposite results, FA/C18:2 levels increased following frying and FA/C18:3 levels were down regulated once the PS was boiled. This indicates that GC-MS is a potential method of validation for the results of lipidomic analysis. Conclusively, this in depth understanding of lipid content in relation to domestic cooking methods has provided a foundation for the processing of high-OA peanut products.


Asunto(s)
Arachis , Ácido Oléico , Culinaria , Ácidos Grasos/metabolismo , Ácido Oléico/metabolismo , Semillas/metabolismo
12.
Food Chem ; 379: 131970, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35065485

RESUMEN

High oleic acid (OA) peanut seeds (PS) can be beneficial for human health. However, chemical variations in high-OA PS after domestic cooking are not fully understood. In order to investigate the impact of different cooking methods on the chemical profile of high-OA PS, widely established metabolomics approach was employed to identify the relative contents of PS metabolites. Herein, 630 metabolites within 27 categories were characterized in PS, of which 141, 157, 402 differential metabolites were observed in each treatment group (boiling, baking, and frying) when compared to the raw seed. Accordingly, bioactive substances were maximally preserved in baked high-OA PS. Further conventional methods (HPLC-UV/GC-MS) quantified the absolute composition of amino and fatty acids, verifying the reliability of metabolomic analysis. Collectively, the understanding of the phytochemical substances in relation to the domestic cooking method established a foundation for future high-OA PS processing.


Asunto(s)
Arachis , Ácido Oléico , Culinaria , Ácidos Grasos , Humanos , Ácido Oléico/análisis , Reproducibilidad de los Resultados
13.
Plant Biotechnol J ; 19(11): 2261-2276, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34174007

RESUMEN

Single-cell RNA-seq (scRNA-seq) has been highlighted as a powerful tool for the description of human cell transcriptome, but the technology has not been broadly applied in plant cells. Herein, we describe the successful development of a robust protoplast cell isolation system in the peanut leaf. A total of 6,815 single cells were divided into eight cell clusters based on reported marker genes by applying scRNA-seq. Further, a pseudo-time analysis was used to describe the developmental trajectory and interaction network of transcription factors (TFs) of distinct cell types during leaf growth. The trajectory enabled re-investigation of the primordium-driven development processes of the mesophyll and epidermis. These results suggest that palisade cells likely differentiate into spongy cells, while the epidermal cells originated earlier than the primordium. Subsequently, the developed method integrated multiple technologies to efficiently validate the scRNA-seq result in a homogenous cell population. The expression levels of several TFs were strongly correlated with epidermal ontogeny in accordance with obtained scRNA-seq values. Additionally, peanut AHL23 (AT-HOOK MOTIF NUCLEAR LOCALIZED PROTEIN 23), which is localized in nucleus, promoted leaf growth when ectopically expressed in Arabidopsis by modulating the phytohormone pathway. Together, our study displays that application of scRNA-seq can provide new hypotheses regarding cell differentiation in the leaf blade of Arachis hypogaea. We believe that this approach will enable significant advances in the functional study of leaf blade cells in the allotetraploid peanut and other plant species.


Asunto(s)
Arachis , Transcriptoma , Arachis/genética , Perfilación de la Expresión Génica , Hojas de la Planta/genética , RNA-Seq , Factores de Transcripción/genética , Transcriptoma/genética
14.
Int J Mol Sci ; 22(9)2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33925801

RESUMEN

Late leaf spot (LLS) caused by fungus Nothopassalora personata in groundnut is responsible for up to 50% yield loss. To dissect the complex nature of LLS resistance, comparative transcriptome analysis was performed using resistant (GPBD 4), susceptible (TAG 24) and a resistant introgression line (ICGV 13208) and identified a total of 12,164 and 9954 DEGs (differentially expressed genes) respectively in A- and B-subgenomes of tetraploid groundnut. There were 135 and 136 unique pathways triggered in A- and B-subgenomes, respectively, upon N. personata infection. Highly upregulated putative disease resistance genes, an RPP-13 like (Aradu.P20JR) and a NBS-LRR (Aradu.Z87JB) were identified on chromosome A02 and A03, respectively, for LLS resistance. Mildew resistance Locus (MLOs)-like proteins, heavy metal transport proteins, and ubiquitin protein ligase showed trend of upregulation in susceptible genotypes, while tetratricopeptide repeats (TPR), pentatricopeptide repeat (PPR), chitinases, glutathione S-transferases, purple acid phosphatases showed upregulation in resistant genotypes. However, the highly expressed ethylene responsive factor (ERF) and ethylene responsive nuclear protein (ERF2), and early responsive dehydration gene (ERD) might be related to the possible causes of defoliation in susceptible genotypes. The identified disease resistance genes can be deployed in genomics-assisted breeding for development of LLS resistant cultivars to reduce the yield loss in groundnut.


Asunto(s)
Arachis , Ascomicetos/patogenicidad , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/microbiología , Arachis/genética , Arachis/metabolismo , Arachis/microbiología , Fabaceae/genética , Perfilación de la Expresión Génica , Genes de Plantas , Fitomejoramiento , Proteínas de Plantas , Transcriptoma
15.
Plants (Basel) ; 10(2)2021 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-33672856

RESUMEN

Phosphoenolpyruvate carboxylase (PEPC) is a ubiquitous cytosolic enzyme that catalyzes the irreversible ß-carboxylation of phosphoenolpyruvate (PEP) in presence of HCO3- to produce oxaloacetate (OAA) during carbon fixation and photosynthesis. It is well accepted that PEPC genes are expressed in plants upon stress. PEPC also supports the biosynthesis of biocompatible osmolytes in many plant species under osmotic stress. There are five isoforms of PEPC found in peanut (Arachis hypogaea L.), namely, AhPEPC1, AhPEPC2, AhPEPC3, AhPEPC4, and AhPEPC5. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis revealed that the gene expression patterns of these AhPEPC genes were different in mature seeds, stems, roots, flowers, and leaves. The expression of all the plant type PEPC (PTPCs) (AhPEPC1, AhPEPC2, AhPEPC3, and AhPEPC4) was relatively high in roots, while the bacterial type PEPC (BTPC) (AhPEPC5) showed a remarkable expression level in flowers. Principal component analysis (PCA) result showed that AhPEPC3 and AhPEPC4 are correlated with each other, indicating comparatively associations with roots, and AhPEPC5 have a very close relationship with flowers. In order to investigate the function of these AhPEPCs, the fragments of these five AhPEPC cDNA were cloned and expressed in Escherichia coli (E. coli). The recombinant proteins contained a conserved domain with a histidine site, which is important for enzyme catalysis. Results showed that protein fragments of AhPEPC1, AhPEPC2, and AhPEPC5 had remarkable expression levels in E. coli. These three recombinant strains were more sensitive at pH 9.0, and recombinant strains carrying AhPEPC2 and AhPEPC5 fragments exhibited more growth than the control strain with the presence of PEG6000. Our findings showed that the expression of the AhPEPC fragments may enhance the resistance of transformed E. coli to osmotic stress.

16.
J Fungi (Basel) ; 6(4)2020 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-33339393

RESUMEN

Aflatoxin-affected groundnut or peanut presents a major global health issue to both commercial and subsistence farming. Therefore, understanding the genetic and molecular mechanisms associated with resistance to aflatoxin production during host-pathogen interactions is crucial for breeding groundnut cultivars with minimal level of aflatoxin contamination. Here, we performed gene expression profiling to better understand the mechanisms involved in reduction and prevention of aflatoxin contamination resulting from Aspergillus flavus infection in groundnut seeds. RNA sequencing (RNA-Seq) of 16 samples from different time points during infection (24 h, 48 h, 72 h and the 7th day after inoculation) in U 4-7-5 (resistant) and JL 24 (susceptible) genotypes yielded 840.5 million raw reads with an average of 52.5 million reads per sample. A total of 1779 unique differentially expressed genes (DEGs) were identified. Furthermore, comprehensive analysis revealed several pathways, such as disease resistance, hormone biosynthetic signaling, flavonoid biosynthesis, reactive oxygen species (ROS) detoxifying, cell wall metabolism and catabolizing and seed germination. We also detected several highly upregulated transcription factors, such as ARF, DBB, MYB, NAC and C2H2 in the resistant genotype in comparison to the susceptible genotype after inoculation. Moreover, RNA-Seq analysis suggested the occurrence of coordinated control of key pathways controlling cellular physiology and metabolism upon A. flavus infection, resulting in reduced aflatoxin production.

17.
PLoS One ; 15(12): e0243132, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33284814

RESUMEN

In order to obtain more valuable insights into the protein dynamics and accumulation of allergens in seeds during underground development, we performed a proteomic study on developing peanut seeds at seven different stages. A total of 264 proteins with altered abundance and contained at least one unique peptide was detected by matrix-assisted laser desorption ionization time-of-flight/time-of-flight mass spectrometry (MALDI-TOF/TOF MS). All identified proteins were classified into five functional categories as level 1 and 20 secondary functional categories as level 2. Among them, 88 identified proteins (IPs) were related to carbohydrate/ amino acid/ lipid transport and metabolism, indicating that carbohydrate/amino acid/ lipid metabolism played a key role in the underground development of peanut seeds. Hierarchical cluster analysis showed that all IPs could be classified into eight cluster groups according to the abundance profiles, suggesting that the modulatory patterns of these identified proteins were complicated during seed development. The largest group contained 41 IPs, the expression of which decreased at R 2 and reached a maximum at R3 but gradually decreased from R4. A total of 14 IPs were identified as allergen-like proteins by BLAST with A genome (Arachis duranensis) or B genome (Arachis ipaensis) translated allergen sequences. Abundance profile analysis of 14 identified allergens showed that the expression of all allergen proteins was low or undetectable by 2-DE at the early stages (R1 to R4), and began to accumulate from the R5 stage and gradually increased. Network analysis showed that most of the significant proteins were involved in active metabolic pathways in early development. Real time RT-PCR analysis revealed that transcriptional regulation was approximately consistent with expression at the protein level for 8 selected identified proteins. In addition, some amino acid sequences that may be associated with new allergens were also discussed.


Asunto(s)
Arachis/embriología , Proteínas de Almacenamiento de Semillas/metabolismo , Semillas/crecimiento & desarrollo , Alérgenos/metabolismo , Arachis/crecimiento & desarrollo , Arachis/metabolismo , Electroforesis en Gel Bidimensional , Regulación de la Expresión Génica de las Plantas , Mapas de Interacción de Proteínas , Proteómica , ARN de Planta/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas de Almacenamiento de Semillas/fisiología , Semillas/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
18.
Sci Rep ; 10(1): 13050, 2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32747681

RESUMEN

Peanut pods develop underground, which is the most salient characteristic in peanut. However, its developmental transcriptome remains largely unknown. In the present study, we sequenced over one billion transcripts to explore the developmental transcriptome of peanut pod using Illumina sequencing. Moreover, we identified and quantified the abundances of 165,689 transcripts in seed and shell tissues along with a pod developmental gradient. The dynamic changes of differentially expressed transcripts (DETs) were described in seed and shell. Additionally, we found that photosynthetic genes were not only pronouncedly enriched in aerial pod, but also played roles in developing pod under dark condition. Genes functioning in photomorphogenesis showed distinct expression profiles along subterranean pod development. Clustering analysis unraveled a dynamic transcriptome, in which transcripts for DNA synthesis and cell division during pod expansion were transitioning to transcripts for cell expansion and storage activity during seed filling. Collectively, our study formed a transcriptional baseline for peanut fruit development under dark condition.


Asunto(s)
Arachis/genética , Oscuridad , Frutas/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Semillas/genética , Arachis/crecimiento & desarrollo , Fenotipo , Fotosíntesis/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Semillas/crecimiento & desarrollo , Transcriptoma/genética , Regulación hacia Arriba/genética
19.
J Proteome Res ; 19(6): 2226-2235, 2020 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-32367721

RESUMEN

Peanut (Arachis hypogaea L.) is a staple crop in semiarid tropical and subtropical regions. Although the genome of peanut has been fully sequenced, the current gene annotations are still incomplete. New technologies in genomics and proteomics have resulted in the emergence of proteogenomics, which can integrate genomic, transcriptomic, and proteomic data for improving gene annotation. In the present study, we collected RNA-seq and proteomic data from multiple tissues such as seed, shell, and gynophore of peanut and utilized a proteogenomic approach to improve the gene annotation of peanut based on these data. A total of 1 935 655 904 RNA-seq reads and 7 490 280 MS/MS spectra were collected. Ultimately, 13 767 annotated genes were found with evidence at the protein level, and seven novel protein-coding genes were found with both RNA-seq and proteomics evidence. In addition, 35 gene models were updated based on proteomics data. Proteogenomic approaches improved the gene annotation in certain aspects by integrating both RNA-seq and proteomic data. We expect that these approaches could help improve existing genome annotations of other species.


Asunto(s)
Proteogenómica , Arachis/genética , Anotación de Secuencia Molecular , Proteómica , Espectrometría de Masas en Tándem , Flujo de Trabajo
20.
J Agric Food Chem ; 68(1): 426-438, 2020 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-31855429

RESUMEN

Modern peanut contains fatty acid desaturase 2 (FAD2) mutation, which is capable of producing high oleic acid for human health. However, the dynamic changes of the lipidome regarding fad2 remain elusive in peanut seed. In the present study, 547 lipid features were identified in high- and normal-oleic peanut seeds by utilizing the mass spectrometric approach. The fad2-induced differently expressed lipids (DELs) were polarly distributed at early and maturation stages during high-oleic acid (OA) seed development. Subsequently, integration of previously published proteomic data and lipidomic data revealed that 21 proteins and 149 DELs were annotated into the triacylglycerol assembly map, of which nine enzymes and 31 lipid species shared similar variation tendencies. Additionally, the variation tendencies of 17 acyl fatty acids were described in a hypothetical biosynthetic pathway. Collectively, the understanding of the lipid composition correlated with fad2 established a foundation for future high-OA peanut breeding based on lipidomic data.


Asunto(s)
Arachis/química , Lípidos/química , Ácido Oléico/química , Proteínas de Plantas/química , Arachis/genética , Arachis/crecimiento & desarrollo , Arachis/metabolismo , Ácido Graso Desaturasas/genética , Ácido Graso Desaturasas/metabolismo , Metabolismo de los Lípidos , Lipidómica , Mutación , Ácido Oléico/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteómica , Semillas/química , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...