Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Infect Control Hosp Epidemiol ; 40(6): 649-655, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31012399

RESUMEN

BACKGROUND: Determining infectious cross-transmission events in healthcare settings involves manual surveillance of case clusters by infection control personnel, followed by strain typing of clinical/environmental isolates suspected in said clusters. Recent advances in genomic sequencing and cloud computing now allow for the rapid molecular typing of infecting isolates. OBJECTIVE: To facilitate rapid recognition of transmission clusters, we aimed to assess infection control surveillance using whole-genome sequencing (WGS) of microbial pathogens to identify cross-transmission events for epidemiologic review. METHODS: Clinical isolates of Staphylococcus aureus, Enterococcus faecium, Pseudomonas aeruginosa, and Klebsiella pneumoniae were obtained prospectively at an academic medical center, from September 1, 2016, to September 30, 2017. Isolate genomes were sequenced, followed by single-nucleotide variant analysis; a cloud-computing platform was used for whole-genome sequence analysis and cluster identification. RESULTS: Most strains of the 4 studied pathogens were unrelated, and 34 potential transmission clusters were present. The characteristics of the potential clusters were complex and likely not identifiable by traditional surveillance alone. Notably, only 1 cluster had been suspected by routine manual surveillance. CONCLUSIONS: Our work supports the assertion that integration of genomic and clinical epidemiologic data can augment infection control surveillance for both the identification of cross-transmission events and the inclusion of missed and exclusion of misidentified outbreaks (ie, false alarms). The integration of clinical data is essential to prioritize suspect clusters for investigation, and for existing infections, a timely review of both the clinical and WGS results can hold promise to reduce HAIs. A richer understanding of cross-transmission events within healthcare settings will require the expansion of current surveillance approaches.


Asunto(s)
Infección Hospitalaria/epidemiología , Genoma Bacteriano , Control de Infecciones/métodos , Tipificación Molecular , Secuenciación Completa del Genoma , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Análisis por Conglomerados , Infección Hospitalaria/microbiología , Infección Hospitalaria/prevención & control , Brotes de Enfermedades , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Massachusetts , Persona de Mediana Edad , Epidemiología Molecular/métodos , Adulto Joven
2.
PLoS One ; 13(12): e0209785, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30576392

RESUMEN

We recently identified a novel vancomycin-resistant Enterococcus faecium (VREfm) clone ST736 with reduced daptomycin susceptibility. The objectives of this study were to assess the population dynamics of local VREfm strains and genetic alterations predisposing to daptomycin resistance in VREfm ST736 strains. Multilocus sequence typing and single nucleotide variant data were derived from whole-genome sequencing of 250 E. faecium isolates from 1994-1995 (n = 43), 2009-2012 (n = 115) and 2013 (n = 92). A remarkable change was noticed in the clonality and antimicrobial resistance profiles of E. faecium strains between 1994-1995 and 2013. VREfm sequence type 17 (ST17), the prototype strain of clade A1, was the dominant clone (76.7%) recognized in 1994-1995. By contrast, clone ST736 accounted for 46.7% of VREfm isolates, followed by ST18 (26.1%) and ST412 (20.7%) in 2013. Bayesian evolutionary analysis suggested that clone ST736 emerged between 1996 and 2009. Co-mutations (liaR.W73C and liaS.T120A) of the liaFSR system were identified in all ST736 isolates (n = 111, 100%) examined. Thirty-eight (34.2%) ST736 isolates exhibited daptomycin-resistant phenotype, of which 13 isolates had mutations in both the liaFSR and cardiolipin synthase (cls) genes and showed high level of resistance with a daptomycin MIC50 of 32 µg/mL. The emergence of ST736 strains with mutations predisposing to daptomycin resistance and subsequent clonal spread among inpatients contributed to the observed high occurrence of daptomycin resistance in VREfm at our institution. The expanding geographic distribution of ST736 strains in other states and countries raises concerns about its global dissemination.


Asunto(s)
Daptomicina/uso terapéutico , Evolución Molecular , Mutación/genética , Enterococos Resistentes a la Vancomicina/efectos de los fármacos , Antibacterianos/uso terapéutico , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Genoma Bacteriano/genética , Infecciones por Bacterias Grampositivas/tratamiento farmacológico , Infecciones por Bacterias Grampositivas/microbiología , Infecciones por Bacterias Grampositivas/prevención & control , Humanos , Pruebas de Sensibilidad Microbiana , Tipificación de Secuencias Multilocus , Enterococos Resistentes a la Vancomicina/patogenicidad , Secuenciación Completa del Genoma
3.
Am J Med Genet B Neuropsychiatr Genet ; 174(3): 315-323, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28190298

RESUMEN

Bipolar disorder (BD) is a common, recurring psychiatric illness with unknown pathogenesis. Recent studies suggest that microRNA (miRNA) levels in brains of BD patients are significantly altered, and these changes may offer insight into BD pathology or etiology. Previously, we observed significant alterations of miR-29c levels in extracellular vesicles (EVs) extracted from prefrontal cortex (Brodmann area 9, BA9) of BD patients. In this study, we show that EVs extracted from the anterior cingulate cortex (BA24), a crucial area for modulating emotional expression and affect, have increased levels of miR-149 in BD patients compared to controls. Because miR-149 has been shown to inhibit glial proliferation, increased miR-149 expression in BA24-derived EVs is consistent with the previously reported reduced glial cell numbers in BA24 of patients diagnosed with either familial BD or familial major depressive disorder. qPCR analysis of laser-microdissected neuronal and glial cells from BA24 cortical samples of BD patients verified that the glial, but not neuronal, population exhibits significantly increased miR-149 expression. Finally, we report altered expression of both miR-149 and miR-29c in EVs extracted from brains of Flinders Sensitive Line rats, a well-validated animal model exhibiting depressive-like behaviors and glial (astrocytic) dysfunction. These findings warrant future investigations into the potential of using EV miRNA signatures as biomarkers to further enhance the biological definition of BD. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Trastorno Bipolar/diagnóstico , Trastorno Bipolar/genética , MicroARNs/genética , Animales , Biomarcadores/sangre , Encéfalo/patología , Trastorno Depresivo Mayor/patología , Modelos Animales de Enfermedad , Vesículas Extracelulares/genética , Femenino , Giro del Cíngulo/metabolismo , Humanos , Masculino , MicroARNs/sangre , Ratas
4.
BMC Genomics ; 17(1): 776, 2016 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-27716130

RESUMEN

BACKGROUND: MicroRNAs (miRNAs) are short, non-coding RNAs that regulate gene expression mainly through translational repression of target mRNA molecules. More than 2700 human miRNAs have been identified and some are known to be associated with disease phenotypes and to display tissue-specific patterns of expression. METHODS: We used high-throughput small RNA sequencing to discover novel miRNAs in 93 human post-mortem prefrontal cortex samples from individuals with Huntington's disease (n = 28) or Parkinson's disease (n = 29) and controls without neurological impairment (n = 36). A custom miRNA identification analysis pipeline was built, which utilizes miRDeep* miRNA identification and result filtering based on false positive rate estimates. RESULTS: Ninety-nine novel miRNA candidates with a false positive rate of less than 5 % were identified. Thirty-four of the candidate miRNAs show sequence similarity with known mature miRNA sequences and may be novel members of known miRNA families, while the remaining 65 may constitute previously undiscovered families of miRNAs. Nineteen of the 99 candidate miRNAs were replicated using independent, publicly-available human brain RNA-sequencing samples, and seven were experimentally validated using qPCR. CONCLUSIONS: We have used small RNA sequencing to identify 99 putative novel miRNAs that are present in human brain samples.


Asunto(s)
Encéfalo/metabolismo , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , MicroARNs/genética , Autopsia , Encéfalo/patología , Regulación de la Expresión Génica , Humanos , Enfermedad de Huntington/genética , Enfermedad de Parkinson/genética
6.
Front Aging Neurosci ; 8: 36, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26973511

RESUMEN

OBJECTIVE: The goal of this study was to compare the microRNA (miRNA) profile of Parkinson's disease (PD) frontal cortex with normal control brain, allowing for the identification of PD specific signatures as well as study the disease-related phenotypes of onset age and dementia. METHODS: Small RNA sequence analysis was performed from prefrontal cortex for 29 PD samples and 33 control samples. After sample QC, normalization and batch correction, linear regression was employed to identify miRNAs altered in PD, and a PD classifier was developed using weighted voting class prediction. The relationship of miRNA levels to onset age and PD with dementia (PDD) was also characterized in case-only analyses. RESULTS: One twenty five miRNAs were differentially expressed in PD at a genome-wide level of significance (FDR q < 0.05). A set of 29 miRNAs classified PD from non-diseased brain (93.9% specificity, 96.6% sensitivity). The majority of differentially expressed miRNAs (105/125) showed an ordinal relationship from control, to PD without dementia (PDN), to PDD. Among PD brains, 36 miRNAs classified PDD from PDN (sensitivity = 81.2%, specificity = 88.9%). Among differentially expressed miRNAs, miR-10b-5p had a positive association with onset age (q = 4.7e-2). CONCLUSIONS: Based on cortical miRNA levels, PD brains were accurately classified from non-diseased brains. Additionally, the PDD miRNA profile exhibited a more severe pattern of alteration among those differentially expressed in PD. To evaluate the clinical utility of miRNAs as potential clinical biomarkers, further characterization and testing of brain-related miRNA alterations in peripheral biofluids is warranted.

7.
PLoS One ; 10(12): e0143563, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26636579

RESUMEN

Huntington's Disease (HD) is a devastating neurodegenerative disorder that is caused by an expanded CAG trinucleotide repeat in the Huntingtin (HTT) gene. Transcriptional dysregulation in the human HD brain has been documented but is incompletely understood. Here we present a genome-wide analysis of mRNA expression in human prefrontal cortex from 20 HD and 49 neuropathologically normal controls using next generation high-throughput sequencing. Surprisingly, 19% (5,480) of the 28,087 confidently detected genes are differentially expressed (FDR<0.05) and are predominantly up-regulated. A novel hypothesis-free geneset enrichment method that dissects large gene lists into functionally and transcriptionally related groups discovers that the differentially expressed genes are enriched for immune response, neuroinflammation, and developmental genes. Markers for all major brain cell types are observed, suggesting that HD invokes a systemic response in the brain area studied. Unexpectedly, the most strongly differentially expressed genes are a homeotic gene set (represented by Hox and other homeobox genes), that are almost exclusively expressed in HD, a profile not widely implicated in HD pathogenesis. The significance of transcriptional changes of developmental processes in the HD brain is poorly understood and warrants further investigation. The role of inflammation and the significance of non-neuronal involvement in HD pathogenesis suggest anti-inflammatory therapeutics may offer important opportunities in treating HD.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Genes del Desarrollo , Enfermedad de Huntington/genética , Inflamación/genética , Análisis de Secuencia de ARN/métodos , Adulto , Anciano , Encéfalo/inmunología , Encéfalo/metabolismo , Regulación de la Expresión Génica , Genes Homeobox , Humanos , Masculino , Persona de Mediana Edad
8.
Mov Disord ; 30(14): 1961-4, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26573701

RESUMEN

BACKGROUND: Biomarkers for Huntington's disease progression could accelerate therapeutic developments and improve patient care. Brain microRNAs relating to clinical features of Huntington's disease may represent a potential Huntington's disease biomarker in blood. OBJECTIVE: This study was undertaken to examine candidate microRNAs in plasma to determine whether changes observed in HD brains are detectable in peripheral samples. METHODS: Four microRNAs from 26 manifest Huntington's disease, four asymptomatic Huntington's disease gene carriers, and eight controls were quantified in plasma using reverse transcription quantitative polymerase chain reaction. Linear regression was used to assess microRNA levels across control, asymptomatic gene carriers, and manifest patients. RESULTS: miR-10b-5p (P = 0.0068) and miR-486-5p (P = 0.044) were elevated in Huntington's disease plasma. miR-10b-5p was decreased in asymptomatic gene carriers as compared with patients with Huntington's disease (P = 0.049), but no difference between asymptomatic gene carriers and healthy controls was observed (P = 0.24). CONCLUSIONS: These findings suggest that microRNA changes observed in Huntington's disease brain may be detectable in plasma and have potential clinical utility.


Asunto(s)
Encéfalo/patología , Enfermedad de Huntington/metabolismo , MicroARNs/sangre , Adolescente , Adulto , Biomarcadores/sangre , Niño , Preescolar , Progresión de la Enfermedad , Femenino , Humanos , Enfermedad de Huntington/genética , Enfermedad de Huntington/patología , Lactante , Masculino , Persona de Mediana Edad , Adulto Joven
9.
BMC Med Genomics ; 8: 10, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25889241

RESUMEN

BACKGROUND: MicroRNAs (miRNAs) are small non-coding RNAs that recognize sites of complementarity of target messenger RNAs, resulting in transcriptional regulation and translational repression of target genes. In Huntington's disease (HD), a neurodegenerative disease caused by a trinucleotide repeat expansion, miRNA dyregulation has been reported, which may impact gene expression and modify the progression and severity of HD. METHODS: We performed next-generation miRNA sequence analysis in prefrontal cortex (Brodmann Area 9) from 26 HD, 2 HD gene positive, and 36 control brains. Neuropathological information was available for all HD brains, including age at disease onset, CAG-repeat size, Vonsattel grade, and Hadzi-Vonsattel striatal and cortical scores, a continuous measure of the extent of neurodegeneration. Linear models were performed to examine the relationship of miRNA expression to these clinical features, and messenger RNA targets of associated miRNAs were tested for gene ontology term enrichment. RESULTS: We identified 75 miRNAs differentially expressed in HD brain (FDR q-value <0.05). Among the HD brains, nine miRNAs were significantly associated with Vonsattel grade of neuropathological involvement and three of these, miR-10b-5p, miR-10b-3p, and miR-302a-3p, significantly related to the Hadzi-Vonsattel striatal score (a continuous measure of striatal involvement) after adjustment for CAG length. Five miRNAs (miR-10b-5p, miR-196a-5p, miR-196b-5p, miR-10b-3p, and miR-106a-5p) were identified as having a significant relationship to CAG length-adjusted age of onset including miR-10b-5p, the mostly strongly over-expressed miRNA in HD cases. Although prefrontal cortex was the source of tissue profiled in these studies, the relationship of miR-10b-5p expression to striatal involvement in the disease was independent of cortical involvement. Correlation of miRNAs to the clinical features clustered by direction of effect and the gene targets of the observed miRNAs showed association to processes relating to nervous system development and transcriptional regulation. CONCLUSIONS: These results demonstrate that miRNA expression in cortical BA9 provides insight into striatal involvement and support a role for these miRNAs, particularly miR-10b-5p, in HD pathogenicity. The miRNAs identified in our studies of postmortem brain tissue may be detectable in peripheral fluids and thus warrant consideration as accessible biomarkers for disease stage, rate of progression, and other important clinical characteristics of HD.


Asunto(s)
Encéfalo/patología , Cuerpo Estriado/metabolismo , Regulación de la Expresión Génica , Enfermedad de Huntington/genética , MicroARNs/genética , Adulto , Edad de Inicio , Anciano , Corteza Cerebral/patología , Progresión de la Enfermedad , Femenino , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Modelos Lineales , Masculino , MicroARNs/metabolismo , Persona de Mediana Edad
10.
PLoS Genet ; 10(2): e1004188, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24586208

RESUMEN

Transcriptional dysregulation has long been recognized as central to the pathogenesis of Huntington's disease (HD). MicroRNAs (miRNAs) represent a major system of post-transcriptional regulation, by either preventing translational initiation or by targeting transcripts for storage or for degradation. Using next-generation miRNA sequencing in prefrontal cortex (Brodmann Area 9) of twelve HD and nine controls, we identified five miRNAs (miR-10b-5p, miR-196a-5p, miR-196b-5p, miR-615-3p and miR-1247-5p) up-regulated in HD at genome-wide significance (FDR q-value<0.05). Three of these, miR-196a-5p, miR-196b-5p and miR-615-3p, were expressed at near zero levels in control brains. Expression was verified for all five miRNAs using reverse transcription quantitative PCR and all but miR-1247-5p were replicated in an independent sample (8HD/8C). Ectopic miR-10b-5p expression in PC12 HTT-Q73 cells increased survival by MTT assay and cell viability staining suggesting increased expression may be a protective response. All of the miRNAs but miR-1247-5p are located in intergenic regions of Hox clusters. Total mRNA sequencing in the same samples identified fifteen of 55 genes within the Hox cluster gene regions as differentially expressed in HD, and the Hox genes immediately adjacent to the four Hox cluster miRNAs as up-regulated. Pathway analysis of mRNA targets of these miRNAs implicated functions for neuronal differentiation, neurite outgrowth, cell death and survival. In regression models among the HD brains, huntingtin CAG repeat size, onset age and age at death were independently found to be inversely related to miR-10b-5p levels. CAG repeat size and onset age were independently inversely related to miR-196a-5p, onset age was inversely related to miR-196b-5p and age at death was inversely related to miR-615-3p expression. These results suggest these Hox-related miRNAs may be involved in neuroprotective response in HD. Recently, miRNAs have shown promise as biomarkers for human diseases and given their relationship to disease expression, these miRNAs are biomarker candidates in HD.


Asunto(s)
Diferenciación Celular/genética , Genes Homeobox , Enfermedad de Huntington/genética , MicroARNs/biosíntesis , Animales , Autopsia , Regulación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Enfermedad de Huntington/patología , MicroARNs/genética , Neuronas/citología , Fármacos Neuroprotectores , Células PC12 , Corteza Prefrontal/metabolismo , Corteza Prefrontal/patología , ARN Mensajero/genética , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...