RESUMEN
Plants contain three NADPH-thioredoxin reductases (NTR) located in the cytosol/mitochondria (NTRA/B) and the plastid (NTRC) with important metabolic functions. However, mutants deficient in all NTRs remained to be investigated. Here, we generated and characterised the triple Arabidopsis ntrabc mutant alongside with ntrc single and ntrab double mutants under different environmental conditions. Both ntrc and ntrabc mutants showed reduced growth and substantial metabolic alterations, especially in sink leaves and under high CO2 (HC), as compared to the wild type. However, ntrabc showed higher effective quantum yield of PSII under both constant and fluctuating light conditions, altered redox states of NADH/NAD+ and glutathione (GSH/GSSG) and lower potential quantum yield of PSII in sink leaves in ambient but not high CO2 concentrations, as compared to ntrc, suggesting a functional interaction between chloroplastic and extra-chloroplastic NTRs in photosynthesis regulation depending on leaf development and environmental conditions. Our results unveil a previously unknown role of the NTR system in regulating sink leaf metabolism and plant acclimation to HC, while it is not affecting full plant development, indicating that the lack of the NTR system can be compensated, at least to some extent, by other redox mechanisms.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , NADP/metabolismo , Dióxido de Carbono/metabolismo , Reductasa de Tiorredoxina-Disulfuro/genética , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Arabidopsis/metabolismo , Fotosíntesis/fisiología , Cloroplastos/metabolismo , Oxidación-Reducción , Hojas de la Planta/metabolismo , Tiorredoxinas/metabolismo , AclimataciónRESUMEN
Thioredoxins (TRXs) are important proteins involved in redox regulation of metabolism. In plants, it has been shown that the mitochondrial metabolism is regulated by the mitochondrial TRX system. However, the functional significance of TRX h2, which is found at both cytosol and mitochondria, remains unclear. Arabidopsis plants lacking TRX h2 showed delayed seed germination and reduced respiration alongside impaired stomatal and mesophyll conductance, without impacting photosynthesis under ambient O2 conditions. However, an increase in the stoichiometry of photorespiratory CO2 release was found during O2 -dependent gas exchange measurements in trxh2 mutants. Metabolite profiling of trxh2 leaves revealed alterations in key metabolites of photorespiration and in several metabolites involved in respiration and amino acid metabolism. Decreased abundance of serine hydroxymethyltransferase and glycine decarboxylase (GDC) H and L subunits as well as reduced NADH/NAD+ ratios were also observed in trxh2 mutants. We further demonstrated that the redox status of GDC-L is altered in trxh2 mutants in vivo and that recombinant TRX h2 can deactivate GDC-L in vitro, indicating that this protein is redox regulated by the TRX system. Collectively, our results demonstrate that TRX h2 plays an important role in the redox regulation of mitochondrial photorespiratory metabolism.