Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Data ; 9(1): 154, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35383200

RESUMEN

Despite the close linkage between extreme floods and snowmelt, particularly through rain-on-snow (ROS), hydrologic infrastructure is mostly designed based on standard precipitation Intensity-Duration-Frequency curves (PREC-IDF) that neglect snow processes in runoff generation. For snow-dominated regions, such simplification could result in substantial errors in estimating extreme events and infrastructure design risk. To address this long-standing problem, we applied the Next Generation IDF (NG-IDF) technique to estimate design basis extreme events for different durations and return periods in the conterminous United States (CONUS) to distinctly represent the contribution of rain, snowmelt, and ROS events to the amount of water reaching the land surface. A suite of datasets were developed to characterize the magnitude, trend, seasonality, and dominant mechanism of extreme events for over 200,000 locations. Infrastructure design risk associated with the use of PREC-IDF was estimated. Accuracy of the model simulations used in the analyses was confirmed by long-term snow data at over 200 Snowpack Telemetry stations. The presented spatially continuous datasets are readily usable and instrumental for supporting site-specific infrastructure design.

2.
J Clim ; 33(10): 3947-3966, 2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33967388

RESUMEN

Hailstones are a natural hazard that pose a significant threat to property and are responsible for significant economic losses each year in the United States. Detailed understanding of their characteristics is essential to mitigate their impact. Identifying the dynamic and physical factors contributing to hail formation and hailstone sizes is of great importance to weather and climate prediction and policymakers. In this study, we have analyzed the temporal and spatial variabilities of severe hail occurrences over the U.S. southern Great Plains (SGP) states from 2004 to 2016 using two hail datasets: hail reports from the Storm Prediction Center and the newly developed radar-retrieved maximum expected size of hail (MESH). It is found that severe and significant severe hail occurrences have a considerable year-to-year temporal variability in the SGP region. The interannual variabilities have a strong correspondence with sea surface temperature anomalies over the northern Gulf of Mexico and there is no outlier. The year 2016 is identified as an outlier for the correlations with both El Niño-Southern Oscillation (ENSO) and aerosol loading. The correlations with ENSO and aerosol loading are not statistically robust to inclusion of the outlier 2016. Statistical analysis without the outlier 2016 shows that 1) aerosols that may be mainly from northern Mexico have the largest correlation with hail interannual variability among the three factors and 2) meteorological covariation does not significantly contribute to the high correlation. These analyses warrant further investigations of aerosol impacts on hail occurrence.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...