Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Phys Imaging Radiat Oncol ; 23: 74-79, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35833200

RESUMEN

Background and purpose: In (ultra-)hypofractionation, the contribution of intrafraction motion to treatment accuracy becomes increasingly important. Our purpose was to evaluate intrafraction motion and resulting geometric uncertainties for breast tumor (bed) and individual axillary lymph nodes, and to compare prone and supine position for the breast tumor (bed). Materials and methods: During 1-3 min of free breathing, we acquired transverse/sagittal interleaved 1.5 T cine magnetic resonance imaging (MRI) of the breast tumor (bed) in prone and supine position and coronal/sagittal cine MRI of individual axillary lymph nodes in supine position. A total of 31 prone and 23 supine breast cine MRI (in 23 women) and 52 lymph node cine MRI (in 24 women) were included. Maximum displacement, breathing amplitude, and drift were analyzed using deformable image registration. Geometric uncertainties were calculated for all displacements and for breathing motion only. Results: Median maximum displacements (range over the three orthogonal orientations) were 1.1-1.5 mm for the breast tumor (bed) in prone and 1.8-3.0 mm in supine position, and 2.2-2.4 mm for lymph nodes. Maximum displacements were significantly smaller in prone than in supine position, mainly due to smaller breathing amplitude: 0.6-0.9 mm in prone vs. 0.9-1.4 mm in supine. Systematic and random uncertainties were 0.1-0.4 mm in prone position and 0.2-0.8 mm in supine position for the tumor (bed), and 0.4-0.6 mm for the lymph nodes. Conclusion: Intrafraction motion of breast tumor (bed) and individual lymph nodes was small. Motion of the tumor (bed) was smaller in prone than in supine position.

2.
Adv Radiat Oncol ; 7(2): 100854, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35387418

RESUMEN

Purpose: We aimed to evaluate changes in dynamic contrast-enhanced (DCE) and diffusion-weighted (DW) magnetic resonance imaging (MRI) scans acquired before and after single-dose ablative neoadjuvant partial breast irradiation (NA-PBI), and explore the relation between semiquantitative MRI parameters and radiologic and pathologic responses. Methods and Materials: We analyzed 3.0T DCE and DW-MRI of 36 patients with low-risk breast cancer who were treated with single-dose NA-PBI, followed by breast-conserving surgery 6 or 8 months later. MRI was acquired before NA-PBI and 1 week, 2, 4, and 6 months after NA-PBI. Breast radiologists assessed the radiologic response and breast pathologists scored the pathologic response after surgery. Patients were grouped as either pathologic responders or nonresponders (<10% vs ≥10% residual tumor cells). The semiquantitative MRI parameters evaluated were time to enhancement (TTE), 1-minute relative enhancement (RE1min), percentage of enhancing voxels (%EV), distribution of washout curve types, and apparent diffusion coefficient (ADC). Results: In general, the enhancement increased 1 week after NA-PBI (baseline vs 1 week median - TTE: 15s vs 10s; RE1min: 161% vs 197%; %EV: 47% vs 67%) and decreased from 2 months onward (6 months median - TTE: 25s; RE1min: 86%; %EV: 12%). Median ADC increased from 0.83 × 10-3 mm2/s at baseline to 1.28 × 10-3 mm2/s at 6 months. TTE, RE1min, and %EV showed the most potential to differentiate between radiologic responses, and TTE, RE1min, and ADC between pathologic responses. Conclusions: Semiquantitative analyses of DCE and DW-MRI showed changes in relative enhancement and ADC 1 week after NA-PBI, indicating acute inflammation, followed by changes indicating tumor regression from 2 to 6 months after radiation therapy. A relation between the MRI parameters and radiologic and pathologic responses could not be proven in this exploratory study.

3.
Radiother Oncol ; 165: 193-199, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34774649

RESUMEN

BACKGROUND AND PURPOSE: Accelerated partial breast irradiation (APBI) may benefit from the MR-Linac for target definition, patient setup, and motion monitoring. In this planning study, we investigated whether prone or supine position is dosimetrically beneficial for APBI on an MR-Linac and we evaluated patient comfort. MATERIALS AND METHODS: Twenty-patients (9 postoperative, 11 preoperative) with a DCIS or breast tumor <3 cm underwent 1.5 T MRI in prone and supine position. The tumor or tumor bed was delineated as GTV and a 2 cm CTV-margin and 0.5 cm PTV-margin were added. 1.5 T MR-Linac treatment plans (5 × 5.2 Gy) with 11 beams were created for both positions in each patient. We evaluated the number of plans that achieved the planning constraints and performed a dosimetric comparison between prone and supine position using the Wilcoxon signed-rank test (p-value <0.01 for significance). Patient experience during scanning was evaluated with a questionnaire. RESULTS: All 40 plans met the target coverage and OAR constraints, regardless of position. Heart Dmean was not significantly different (1.07 vs. 0.79 Gy, p-value: 0.027). V5Gy to the ipsilateral lung (4.4% vs. 9.8% median, p-value 0.009) and estimated delivery time (362 vs. 392 s, p-value: 0.003) were significantly lower for prone position. PTV coverage and dose to other OAR were comparable between positions. The majority of patients (13/20) preferred supine position. CONCLUSION: APBI on the MR-Linac is dosimetrically feasible in prone and supine position. Mean heart dose was similar in both positions. Ipsilateral lung V5Gy was lower in prone position.


Asunto(s)
Neoplasias de la Mama , Planificación de la Radioterapia Asistida por Computador , Neoplasias de la Mama/radioterapia , Femenino , Humanos , Imagen por Resonancia Magnética , Posición Prona , Dosificación Radioterapéutica , Posición Supina
4.
Front Oncol ; 10: 1107, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32850318

RESUMEN

Current research in radiotherapy (RT) for breast cancer is evaluating neoadjuvant as opposed to adjuvant partial breast irradiation (PBI) with the aim of reducing the volume of breast tissue irradiated and therefore the risk of late treatment-related toxicity. The development of magnetic resonance (MR)-guided RT, including dedicated MR-guided RT systems [hybrid machines combining an MR scanner with a linear accelerator (MR-linac) or 60Co sources], could potentially reduce the irradiated volume even further by improving tumour visibility before and during each RT treatment. In this position paper, we discuss MR guidance in relation to each step of the breast RT planning and treatment pathway, focusing on the application of MR-guided RT to neoadjuvant PBI.

5.
Pract Radiat Oncol ; 10(6): e466-e474, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32315784

RESUMEN

PURPOSE: Our purpose was to present and evaluate expert consensus on contouring primary breast tumors on magnetic resonance imaging (MRI) in the setting of neoadjuvant partial breast irradiation in trials. METHODS AND MATERIALS: Expert consensus on contouring guidelines for target definition of primary breast tumors on contrast-enhanced MRI in trials was developed by an international team of experienced breast radiation oncologists and a dedicated breast radiologist during 3 meetings. At the first meeting, draft guidelines were developed through discussing and contouring 2 cases. At the second meeting 6 breast radiation oncologists delineated gross tumor volume (GTV) in 10 patients with early-stage breast cancer (cT1N0) according to draft guidelines. GTV was expanded isotropically (20 mm) to generate clinical target volume (CTV), excluding skin and chest wall. Delineations were reviewed for disagreement and guidelines were clarified accordingly. At the third meeting 5 radiation oncologists redelineated 6 cases using consensus-based guidelines. Interobserver variation of GTV and CTV was assessed using generalized conformity index (CI). CI was calculated as the sum of volumes each pair of observers agreed upon, divided by the sum of encompassing volumes for each pair of observers. RESULTS: For the 2 delineation sessions combined, mean GTV ranged between 0.19 and 2.44 cm3, CI for GTV ranged between 0.28 and 0.77, and CI for CTV between 0.77 and 0.94. The largest interobserver variation in GTV delineations was observed in cases with extended tumor spiculae, blood vessels near or markers within the tumor, or with increased enhancement of glandular breast tissue. Consensus-based guidelines stated to delineate all visible tumors on contrast enhanced-MRI scan 1 to 2 minutes after contrast injection and if a marker was inserted in the tumor to include this. CONCLUSIONS: Expert-based consensus on contouring primary breast tumors on MRI in trials has been reached. This resulted in low interobserver variation for CTV in the context of a uniform 20 mm GTV to CTV expansion margin.


Asunto(s)
Neoplasias de la Mama , Terapia Neoadyuvante , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/radioterapia , Consenso , Humanos , Imagen por Resonancia Magnética , Variaciones Dependientes del Observador , Planificación de la Radioterapia Asistida por Computador , Carga Tumoral
6.
Int J Radiat Oncol Biol Phys ; 106(4): 821-829, 2020 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-31812720

RESUMEN

PURPOSE: To assess the pathologic and radiologic response in patients with low-risk breast cancer treated with magnetic resonance (MR) guided neoadjuvant partial breast irradiation (NA-PBI) and to evaluate toxicity and patient-reported outcomes (PROs). METHODS AND MATERIALS: For this single-arm prospective trial, women with unifocal, non-lobular tumors with a maximum diameter of 20 mm (age, 50-70 years) or 30 mm (age, ≥70 years) and tumor-negative sentinel node(s) were eligible. Patients were treated with a single ablative dose of NA-PBI followed by breast-conserving surgery after an interval of 6 to 8 months. Target volumes were defined on radiation therapy planning computed tomography scan and additional magnetic resonance imaging. Prescribed doses to gross tumor volume and clinical target volume (gross tumor volume plus 20 mm margin) were 20 Gy and 15 Gy, respectively. Primary outcome was pathologic complete response (pCR). Secondary outcomes were radiologic response (on magnetic resonance imaging), toxicity (Common Terminology Criteria for Adverse Events), PROs (European Organisation for Research and Treatment of Cancer QLQ-BR23, Hospital Anxiety and Depression Scale), and cosmesis (assessed by patient, radiation oncologist, and BCCT.core software). RESULTS: Thirty-six patients were treated with NA-PBI, and pCR was reported in 15 patients (42%; 95% confidence interval, 26%-59%). Radiologic complete response was observed in 15 patients, 10 of whom had pCR (positive predictive value, 67%; 95% confidence interval, 39%-87%). After a median follow-up of 21 months (range, 12-41), all patients experienced grade 1 fibrosis in the treated breast volume. Transient grade 2 and 3 toxicity was observed in 31% and 3% of patients, respectively. Local recurrences were absent. No deterioration in PROs or cosmetic results was observed. CONCLUSIONS: NA-PBI has the potential to induce pCR in a substantial proportion of patients, with acceptable toxicity. This treatment seems a feasible alternative to standard postoperative irradiation and could even result in postponement or omission of surgery if pCR can be accurately predicted in selected low-risk patients.


Asunto(s)
Técnicas de Ablación , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/radioterapia , Imagen por Resonancia Magnética , Terapia Neoadyuvante , Radioterapia Guiada por Imagen , Anciano , Femenino , Humanos , Persona de Mediana Edad , Resultado del Tratamiento
7.
Phys Imaging Radiat Oncol ; 14: 24-31, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33458310

RESUMEN

Background and purpose Adaptive radiotherapy based on cone-beam computed tomography (CBCT) requires high CT number accuracy to ensure accurate dose calculations. Recently, deep learning has been proposed for fast CBCT artefact corrections on single anatomical sites. This study investigated the feasibility of applying a single convolutional network to facilitate dose calculation based on CBCT for head-and-neck, lung and breast cancer patients. Materials and Methods Ninety-nine patients diagnosed with head-and-neck, lung or breast cancer undergoing radiotherapy with CBCT-based position verification were included in this study. The CBCTs were registered to planning CT according to clinical procedures. Three cycle-consistent generative adversarial networks (cycle-GANs) were trained in an unpaired manner on 15 patients per anatomical site generating synthetic-CTs (sCTs). Another network was trained with all the anatomical sites together. Performances of all four networks were compared and evaluated for image similarity against rescan CT (rCT). Clinical plans were recalculated on rCT and sCT and analysed through voxel-based dose differences and γ -analysis. Results A sCT was generated in 10 s. Image similarity was comparable between models trained on different anatomical sites and a single model for all sites. Mean dose differences < 0.5 % were obtained in high-dose regions. Mean gamma (3%, 3 mm) pass-rates > 95 % were achieved for all sites. Conclusion Cycle-GAN reduced CBCT artefacts and increased similarity to CT, enabling sCT-based dose calculations. A single network achieved CBCT-based dose calculation generating synthetic CT for head-and-neck, lung, and breast cancer patients with similar performance to a network specifically trained for each anatomical site.

8.
Phys Imaging Radiat Oncol ; 5: 19-25, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33458364

RESUMEN

BACKGROUND AND PURPOSE: Local implementation of plan-specific quality assurance (QA) methods for intensity-modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) treatment plans may vary because of dissimilarities in procedures, equipment and software. The purpose of this work is detecting possible differences between local QA findings and those of an audit, using the same set of treatment plans. METHODS: A pre-defined set of clinical plans was devised and imported in the participating institute's treatment planning system for dose computation. The dose distribution was measured using an ionisation chamber, radiochromic film and an ionisation chamber array. The centres performed their own QA, which was compared to the audit findings. The agreement/disagreement between the audit and the institute QA results were assessed along with the differences between the dose distributions measured by the audit team and computed by the institute. RESULTS: For the majority of the cases the results of the audit were in agreement with the institute QA findings: ionisation chamber: 92%, array: 88%, film: 76% of the total measurements. In only a few of these cases the evaluated measurements failed for both: ionisation chamber: 2%, array: 4%, film: 0% of the total measurements. CONCLUSION: Using predefined treatment plans, we found that in approximately 80% of the evaluated measurements the results of local QA of IMRT and VMAT plans were in line with the findings of the audit. However, the percentage of agreement/disagreement depended on the characteristics of the measurement equipment used and on the analysis metric.

9.
Int J Radiat Oncol Biol Phys ; 99(3): 710-718, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-29280466

RESUMEN

PURPOSE: To quantify magnetic resonance imaging (MRI) distortions on a plastic intracavitary/interstitial applicator with plastic needles at a field strength of 3 T and to determine the dosimetric impact, using patient data. METHODS AND MATERIALS: For 11 cervical cancer patients, our clinical MRI protocol was extended with 3 scans. From the first scan, a multi-echo acquisition, a map of the magnetic field (B0) was calculated and used to quantify the field inhomogeneity. The expected displacements of the applicator were quantified for the clinical sequence using the measured field inhomogeneity and the clinical sequence's bandwidth. The second and third scan were our routine clinical sequence (duration: <5 minutes each), acquired consecutively using opposing readout directions. The displacement of the applicator between these scans is approximately twice the displacement due to B0 inhomogeneity. The impact of the displacement on the dose was determined by reconstructing the applicator on both scans. The applicator was then shifted and rotated the same distance as the observed displacement to create a worst-case scenario (ie, twice the actual displacement due to B0 inhomogeneity). Next, the dose to 98%/90% (D98/D90) of the clinical target volume at high risk, as well as the dose to the most irradiated 2 cm3 for bladder and rectum, were calculated for the original plan as well as the shifted plan. RESULTS: For a volume of interest containing the intrauterine device and the ovoids the 95th percentile of the absolute displacement ranged between 0.2 and 0.75 mm, over all patients. For all patients, the difference in D98/D90 in the opposing readout scans with the original plan was at most 4.7%/4.3%. For the dose to the most irradiated 2 cm3 of bladder/rectum, the difference was at most 6.0%/6.3%. CONCLUSIONS: The dosimetric impact of distortions on this plastic applicator with plastic needles is limited. Applicator reconstruction for brachytherapy planning purposes is feasible at 3 T MRI.


Asunto(s)
Braquiterapia/instrumentación , Campos Electromagnéticos , Imagen por Resonancia Magnética/métodos , Plásticos , Dosificación Radioterapéutica , Tomografía Computarizada por Rayos X/métodos , Neoplasias del Cuello Uterino/diagnóstico por imagen , Braquiterapia/métodos , Femenino , Humanos , Órganos en Riesgo/diagnóstico por imagen , Órganos en Riesgo/efectos de la radiación , Recto/diagnóstico por imagen , Recto/efectos de la radiación , Vejiga Urinaria/diagnóstico por imagen , Vejiga Urinaria/efectos de la radiación , Neoplasias del Cuello Uterino/radioterapia
10.
Phys Med Biol ; 63(1): 015027, 2017 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-29116054

RESUMEN

Image-guided external beam radiotherapy (EBRT) allows radiation dose deposition with a high degree of accuracy and precision. Guidance is usually achieved by estimating the displacements, via image registration, between cone beam computed tomography (CBCT) and computed tomography (CT) images acquired at different stages of the therapy. The resulting displacements are then used to reposition the patient such that the location of the tumor at the time of treatment matches its position during planning. Moreover, ongoing research aims to use CBCT-CT image registration for online plan adaptation. However, CBCT images are usually acquired using a small number of x-ray projections and/or low beam intensities. This often leads to the images being subject to low contrast, low signal-to-noise ratio and artifacts, which ends-up hampering the image registration process. Previous studies addressed this by integrating additional image processing steps into the registration procedure. However, these steps are usually designed for particular image acquisition schemes, therefore limiting their use on a case-by-case basis. In the current study we address CT to CBCT and CBCT to CBCT registration by the means of the recently proposed EVolution registration algorithm. Contrary to previous approaches, EVolution does not require the integration of additional image processing steps in the registration scheme. Moreover, the algorithm requires a low number of input parameters, is easily parallelizable and provides an elastic deformation on a point-by-point basis. Results have shown that relative to a pure CT-based registration, the intrinsic artifacts present in typical CBCT images only have a sub-millimeter impact on the accuracy and precision of the estimated deformation. In addition, the algorithm has low computational requirements, which are compatible with online image-based guidance of EBRT treatments.


Asunto(s)
Tomografía Computarizada de Haz Cónico/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/radioterapia , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia Guiada por Imagen/métodos , Tomografía Computarizada por Rayos X/métodos , Algoritmos , Humanos , Dosificación Radioterapéutica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA