Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biomedicines ; 12(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38397942

RESUMEN

RNA binding proteins (RBPs) post-transcriptionally regulate gene expression by associating with regulatory sequences in the untranslated regions of mRNAs. Cold-inducible RBP (CIRP) is a stress-induced RBP that was recently shown to modulate inflammation in response to cellular stress, where it increases or decreases pro-tumorigenic (proinflammatory) cytokines in different contexts. CIRP expression is altered in several cancers, including breast cancer, but the effects of CIRP on inflammation in breast cancer is not known. Here, we investigate if CIRP alters growth and the inflammatory profile of breast tumors. Transgenic mice overexpressing CIRP in the mammary epithelium were crossed with the PyMT mouse model of breast cancer, and the effects on both early and late tumorigenesis and inflammation were assessed. The effects of CIRP knockdown were also assessed in Py2T cell grafts. Overexpression of CIRP led to decreased tumorigenesis in the PyMT mouse model. Conversely, the knockdown of CIRP in Py2T cell grafts led to increased tumor growth. Luminex cytokine assays assessed the effects on the inflammatory environment. CIRP/PyMT mammary glands/mammary tumors and serum had decreased cytokines that promote inflammation, angiogenesis, and metastasis compared to PyMT mammary glands and serum, documenting a shift towards an environment less supportive of tumorigenesis. CIRP overexpression also decreased CD4+ helper T cells and increased CD8+ cytotoxic T cells in mammary tumors. Overall, these data support a role for CIRP as a potent antitumor molecule that suppresses both local and systemic pro-tumorigenic inflammation.

2.
Alcohol Clin Exp Res ; 46(1): 77-86, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34825395

RESUMEN

BACKGROUND: Abnormal diffusion within white matter (WM) tracts has been linked to cognitive impairment in children with fetal alcohol spectrum disorder. Whether changes to myelin organization and structure underlie the observed abnormal diffusion patterns remains unknown. Using a third trimester-equivalent mouse model of alcohol exposure, we previously demonstrated acute loss of oligodendrocyte lineage cells with persistent loss of myelin basic protein and lower fractional anisotropy (FA) in the corpus callosum (CC). Here, we tested whether these WM deficits are accompanied by changes in: (i) axial diffusion (AD) and radial diffusion (RD), (ii) myelin ultrastructure, or (iii) structural components of the node of Ranvier. METHODS: Mouse pups were exposed to alcohol or air vapor for 4 h daily from postnatal day (P)3 to P15 (BEC: 160.4 ± 12.0 mg/dl; range = 128.2 to 185.6 mg/dl). Diffusion tensor imaging (DTI) and histological analyses were performed on brain tissue isolated at P50. Diffusion parameters were measured with Paravision™ 5.1 software (Bruker) following ex vivo scanning in a 7.0 T MRI. Nodes of Ranvier were identified using high-resolution confocal imaging of immunofluorescence for Nav 1.6 (nodes) and Caspr (paranodes) and measured using Imaris™ imaging software (Bitplane). Myelin ultrastructure was evaluated by calculating the G-ratio (axonal diameter/myelinated fiber diameter) on images acquired using transmission electron microscopy. RESULTS: Consistent with our previous study, high resolution DTI at P50 showed lower FA in the CC of alcohol-exposed mice (p = 0.0014). Here, we show that while AD (diffusion parallel to CC axons) was similar between treatment groups (p = 0.30), RD (diffusion perpendicular to CC axons) in alcohol-exposed subjects was significantly higher than in controls (p = 0.0087). In the posterior CC, where we identified the highest degree of abnormal diffusion, node of Ranvier length did not differ between treatment groups (p = 0.41); however, the G-ratio of myelinated axons was significantly higher in alcohol-exposed animals than controls (p = 0.023). CONCLUSIONS: High resolution DTI revealed higher RD at P50 in the CC of alcohol-exposed animals, suggesting less myelination of axons, particularly in the posterior regions. In agreement with these findings, ultrastructural analysis of myelinated axons in the posterior CC showed reduced myelin thickness in alcohol-exposed animals, evidenced by a higher G-ratio.


Asunto(s)
Etanol/administración & dosificación , Trastornos del Espectro Alcohólico Fetal/patología , Vaina de Mielina/ultraestructura , Animales , Imagen de Difusión por Resonancia Magnética , Modelos Animales de Enfermedad , Femenino , Trastornos del Espectro Alcohólico Fetal/fisiopatología , Edad Gestacional , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal , Vaina de Mielina/efectos de los fármacos , Vaina de Mielina/fisiología , Embarazo , Sustancia Blanca/efectos de los fármacos , Sustancia Blanca/patología , Sustancia Blanca/fisiopatología
3.
Am J Physiol Lung Cell Mol Physiol ; 319(6): L968-L980, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32997513

RESUMEN

Chronic hypoxia (CH)-induced pulmonary hypertension (PH) results, in part, from T helper-17 (TH17) cell-mediated perivascular inflammation. However, the antigen(s) involved is unknown. Cellular immunity to collagen type V (col V) develops after ischemia-reperfusion injury during lung transplant and is mediated by naturally occurring (n)TH17 cells. Col5a1 gene codifies for the α1-helix of col V, which is normally hidden from the immune system within type I collagen in the extracellular matrix. COL5A1 promoter analysis revealed nuclear factor of activated T cells, cytoplasmic 3 (NFATc3) binding sites. Therefore, we hypothesized that smooth muscle NFATc3 upregulates col V expression, leading to nTH17 cell-mediated autoimmunity to col V in response to CH, representing an upstream mechanism in PH development. To test our hypothesis, we measured indexes of PH in inducible smooth muscle cell (SMC)-specific NFATc3 knockout (KO) mice exposed to either CH (380 mmHg) or normoxia and compared them with wild-type (WT) mice. KO mice did not develop PH. In addition, COL5A1 was one of the 1,792 genes differentially affected by both CH and SMC NFATc3 in isolated intrapulmonary arteries, which was confirmed by RT-PCR and immunostaining. Cellular immunity to col V was determined using a trans vivo delayed-type hypersensitivity assay (Tv-DTH). Tv-DTH response was evident only when splenocytes were used from control mice exposed to CH but not from KO mice, and mediated by nTH17 cells. Our results suggest that SMC NFATc3 is important for CH-induced PH in adult mice, in part, by regulating the expression of the lung self-antigen COL5A1 protein contributing to col V-reactive nTH17-mediated inflammation and hypertension.


Asunto(s)
Colágeno Tipo V/metabolismo , Hipertensión Pulmonar/metabolismo , Miocitos del Músculo Liso/metabolismo , Factores de Transcripción NFATC/metabolismo , Animales , Núcleo Celular/metabolismo , Inmunidad Celular/fisiología , Trasplante de Pulmón/métodos
4.
J Neurochem ; 148(3): 426-439, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30289974

RESUMEN

Glutathione peroxidase 4 (GPx4) is the only enzyme capable of reducing toxic lipid hydroperoxides in biological membranes to the corresponding alcohols using glutathione as the electron donor. GPx4 is the major inhibitor of ferroptosis, a non-apoptotic and iron-dependent programmed cell death pathway, which has been shown to occur in various neurological disorders with severe oxidative stress. In this study, we investigate whether GPx4 expression is altered in multiple sclerosis and its animal model experimental autoimmune encephalomyelitis (EAE). The results clearly show that mRNA expression for all three GPx4 isoforms (cytoplasmic, mitochondrial and nuclear) decline in multiple sclerosis gray matter and in the spinal cord of MOG35-55 peptide-induced EAE. The amount of GPx4 protein is also reduced in EAE, albeit not in all cells. Neuronal GPx4 immunostaining, mostly cytoplasmic, is lower in EAE spinal cords than in control spinal cords, while oligodendrocyte GPx4 immunostaining, mainly nuclear, is unaltered. Neither control nor EAE astrocytes and microglia cells show GPx4 labeling. In addition to GPx4, two other negative modulators of ferroptosis (γ-glutamylcysteine ligase and cysteine/glutamate antiporter), which are critical to maintain physiological levels of glutathione, are diminished in EAE. The decrease in the ability to eliminate hydroperoxides was also evidenced by the accumulation of lipid peroxidation products and the reduction in the proportion of the docosahexaenoic acid in non-myelin lipids. These findings, along with presence of abnormal neuronal mitochondria morphology, which includes an irregular matrix, disrupted outer membrane and reduced/absent cristae, are consistent with the occurrence of ferroptotic damage in inflammatory demyelinating disorders.


Asunto(s)
Encéfalo/enzimología , Encefalomielitis Autoinmune Experimental/enzimología , Glutatión Peroxidasa/metabolismo , Esclerosis Múltiple/enzimología , Médula Espinal/enzimología , Adulto , Anciano , Anciano de 80 o más Años , Animales , Encéfalo/patología , Muerte Celular , Encefalomielitis Autoinmune Experimental/patología , Femenino , Humanos , Isoenzimas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Mitocondrias/enzimología , Mitocondrias/patología , Esclerosis Múltiple/patología , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Médula Espinal/patología
5.
Pulm Circ ; 8(3): 2045894018780734, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29767573

RESUMEN

Interleukin-6 (IL-6) is a pleotropic cytokine that signals through the membrane-bound IL-6 receptor (mIL-6R) to induce anti-inflammatory ("classic-signaling") responses. This cytokine also binds to the soluble IL-6R (sIL-6R) to promote inflammation ("trans-signaling"). mIL-6R expression is restricted to hepatocytes and immune cells. Activated T cells release sIL-6R into adjacent tissues to induce trans-signaling. These cellular actions require the ubiquitously expressed membrane receptor gp130. Reports show that IL-6 is produced by pulmonary arterial smooth muscle cells (PASMCs) exposed to hypoxia in culture as well as the medial layer of the pulmonary arteries in mice exposed to chronic hypoxia (CH), and IL-6 knockout mice are protected from CH-induced pulmonary hypertension (PH). IL-6 has the potential to contribute to a broad array of downstream effects, such as cell growth and migration. CH-induced PH is associated with increased proliferation and migration of PASMCs to previously non-muscularized vessels of the lung. We tested the hypothesis that IL-6 trans-signaling contributes to CH-induced PH and arterial remodeling. Plasma levels of sgp130 were significantly decreased in mice exposed to CH (380 mmHg) for five days compared to normoxic control mice (630 mmHg), while sIL-6R levels were unchanged. Consistent with our hypothesis, mice that received the IL-6 trans-signaling-specific inhibitor sgp130Fc, a fusion protein of the soluble extracellular portion of gp130 with the constant portion of the mouse IgG1 antibody, showed attenuation of CH-induced increases in right ventricular systolic pressure, right ventricular and pulmonary arterial remodeling as compared to vehicle (saline)-treated control mice. In addition, PASMCs cultured in the presence of IL-6 and sIL-6R showed enhanced migration but not proliferation compared to those treated with IL-6 or sIL-6R alone or in the presence of sgp130Fc. These results indicate that IL-6 trans-signaling contributes to pulmonary arterial cell migration and CH-induced PH.

6.
Am J Physiol Lung Cell Mol Physiol ; 312(5): L609-L624, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28213473

RESUMEN

Inflammation is a prominent pathological feature in pulmonary arterial hypertension, as demonstrated by pulmonary vascular infiltration of inflammatory cells, including T and B lymphocytes. However, the contribution of the adaptive immune system is not well characterized in pulmonary hypertension caused by chronic hypoxia. CD4+ T cells are required for initiating and maintaining inflammation, suggesting that these cells could play an important role in the pathogenesis of hypoxic pulmonary hypertension. Our objective was to test the hypothesis that CD4+ T cells, specifically the T helper 17 subset, contribute to chronic hypoxia-induced pulmonary hypertension. We compared indices of pulmonary hypertension resulting from chronic hypoxia (3 wk) in wild-type mice and recombination-activating gene 1 knockout mice (RAG1-/-, lacking mature T and B cells). Separate sets of mice were adoptively transferred with CD4+, CD8+, or T helper 17 cells before normoxic or chronic hypoxic exposure to evaluate the involvement of specific T cell subsets. RAG1-/- mice had diminished right ventricular systolic pressure and arterial remodeling compared with wild-type mice exposed to chronic hypoxia. Adoptive transfer of CD4+ but not CD8+ T cells restored the hypertensive phenotype in RAG1-/- mice. Interestingly, RAG1-/- mice receiving T helper 17 cells displayed evidence of pulmonary hypertension independent of chronic hypoxia. Supporting our hypothesis, depletion of CD4+ cells or treatment with SR1001, an inhibitor of T helper 17 cell development, prevented increased pressure and remodeling responses to chronic hypoxia. We conclude that T helper 17 cells play a key role in the development of chronic hypoxia-induced pulmonary hypertension.


Asunto(s)
Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/inmunología , Hipoxia/complicaciones , Hipoxia/inmunología , Células Th17/inmunología , Traslado Adoptivo , Animales , Presión Sanguínea/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Recuento de Células , Movimiento Celular/efectos de los fármacos , Enfermedad Crónica , Femenino , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/fisiopatología , Proteínas de Homeodominio/metabolismo , Hipertensión Pulmonar/fisiopatología , Interleucina-17/farmacología , Interleucina-6/metabolismo , Pulmón/metabolismo , Depleción Linfocítica , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/patología , Masculino , Ratones Endogámicos C57BL , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Sístole/efectos de los fármacos , Sístole/fisiología , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/inmunología , Células Th17/efectos de los fármacos
8.
Sci Rep ; 4: 7564, 2014 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-25532911

RESUMEN

Coronary atherosclerosis and myocardial infarction in postmenopausal women have been linked to inflammation and reduced nitric oxide (NO) formation. Natural estrogen exerts protective effects on both processes, yet also displays uterotrophic activity. Here, we used genetic and pharmacologic approaches to investigate the role of the G protein-coupled estrogen receptor (GPER) in atherosclerosis. In ovary-intact mice, deletion of gper increased atherosclerosis progression, total and LDL cholesterol levels and inflammation while reducing vascular NO bioactivity, effects that were in some cases aggravated by surgical menopause. In human endothelial cells, GPER was expressed on intracellular membranes and mediated eNOS activation and NO formation, partially accounting for estrogen-mediated effects. Chronic treatment with G-1, a synthetic, highly selective small molecule agonist of GPER, reduced postmenopausal atherosclerosis and inflammation without uterotrophic effects. In summary, this study reveals an atheroprotective function of GPER and introduces selective GPER activation as a novel therapeutic approach to inhibit postmenopausal atherosclerosis and inflammation in the absence of uterotrophic activity.


Asunto(s)
Aterosclerosis/metabolismo , Células Endoteliales/metabolismo , Posmenopausia/metabolismo , Receptores de Estrógenos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/genética , Aterosclerosis/patología , LDL-Colesterol/genética , LDL-Colesterol/metabolismo , Ciclopentanos/farmacología , Femenino , Humanos , Membranas Intracelulares/metabolismo , Ratones , Ratones Noqueados , Óxido Nítrico/genética , Óxido Nítrico/metabolismo , Posmenopausia/genética , Quinolinas/farmacología , Receptores de Estrógenos/genética , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/genética
9.
Neurochem Res ; 29(9): 1675-85, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15453262

RESUMEN

This study investigates the effect of nitric oxide (NO) on both the chemical modifications of CNS proteins and the architecture of the myelinated internode. Incubation of rat optic nerves for 2 h with 1 mM concentration of the NO-donors S-nitroso-N-acetyl-penicillamine (SNAP), ethyl-2-[hydroxyimino]-5-nitro-3-hexeneamide (NOR-3), and 4-phenyl-3-furoxan carbonitrile (PFC) led to decompaction of myelin at the level of the intraperiod line (IPL). In contrast, incubation with 1 mM sodium nitroprusside, which slowly releases NO, sodium nitrite, and N-nitrosopyrrolidine failed to cause myelin disassembly. This suggests that free NO and/or some of its direct oxidation products (e.g., N2O3) are the active molecular species. NO-induced alterations in myelin architecture could not be assigned to protein or lipid degradation, lipid peroxidation, ATP depletion, calcium uptake, protein nitration, protein carbonylation, and nerve depolarization. NO-treatment, however, resulted in the S-nitrosation of a number of proteins. In myelin, one of the major S-nitrosated substrates was identified as proteolipid protein (PLP), an abundant cysteine-rich protein that is responsible for IPL stabilization. Peripheral nervous system myelin, whose stability depends on proteins other than PLP, was not decompacted upon incubation of sciatic nerves with SNAP. It is proposed that NO-mediated nitrosation of sulfhydryl groups is likely to interfere with the normal function of PLP and other important CNS myelin proteins leading to the structural demise of this membrane. These findings are relevant to multiple sclerosis and other inflammatory demyelinating disorders where both excessive NO production and myelin instability are known to occur.


Asunto(s)
Tronco Encefálico/efectos de los fármacos , Vaina de Mielina/efectos de los fármacos , Donantes de Óxido Nítrico/farmacología , Óxido Nítrico/farmacología , Nervio Óptico/fisiología , Animales , Tronco Encefálico/parasitología , Técnicas In Vitro , Vaina de Mielina/patología , Nervio Óptico/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
10.
Neurochem Res ; 27(11): 1269-77, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12512933

RESUMEN

The different molecular species that form the myelin proteolipid protein family were isolated by size-exclusion and ion-exchange chromatography in organic solvents and their adhesive properties were tested using a vesicle aggregation assay. Addition of the major proteolipid (PLP) to phosphatidylcholine-cholesterol vesicles caused their clustering as determined by increase in O.D.(450 nm) and by transmission electron microscopy. A small fraction of the aggregated vesicles underwent fusion as determined by resonance energy transfer experiments. Vesicle aggregation by PLP, but not the dissociation of the aggregates, was influenced by pH suggesting that electrostatic interactions are important only during cluster formation. Cleavage of disulfide bonds and methylation of carboxyl groups in PLP greatly reduced the aggregating activity, indicating that the process is dependent on the protein's conformation. Unexpectedly, the proteolipid DM-20 was also effective at inducing the clustering of neutral lipid vesicles. In contrast, three protein fractions comprising the naturally-occurring PLP fragments 1-107/112, 113/125-276 and 129/131-276, bearing different net charges, displayed a much lower activity. In addition, trypsin digestion of PLP resulted in a progressive decrease in the protein's ability to induce vesicle aggregation which coincided with the disappearance of the full-length molecule. Together, these results suggest that even large PLP fragments cannot fulfill the adhesive function of the intact protein.


Asunto(s)
Metabolismo de los Lípidos , Proteína Proteolipídica de la Mielina/fisiología , Electroforesis en Gel de Poliacrilamida , Transferencia de Energía , Hidrólisis , Metilación , Microscopía Electrónica , Proteína Proteolipídica de la Mielina/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA