Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
FEBS J ; 287(24): 5254-5259, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33197146

RESUMEN

Xin Lu is Professor of Cancer Biology at the University of Oxford, UK, and Director of the Oxford Branch of the Ludwig Institute for Cancer Research, Co-director of the Cancer Research UK Oxford Centre, NIHR Oxford Biomedical Research Centre Multi-Modal Cancer Therapies Theme Lead and Director of the Oxford Centre for Early Cancer Detection. She has a long-standing interest in mechanisms of tumour suppression and cellular plasticity, centred on studies of p53 and the ASPP family of proteins (apoptosis-stimulating protein of p53; ankyrin repeats, SH3 domain and proline-rich sequence-containing proteins). Her laboratory's discovery of ASPPs, regulators or 'molecular switches' of the apoptotic function of p53 led to key insights into the role of cell plasticity in cancer and other diseases, and these could pave the way to new diagnostic and therapeutic interventions. Xin has received many awards and honours in recognition of her significant contributions to cancer biology, including being elected as a Fellow of the Royal Society in 2020. Here, she outlines how her breakthrough discovery of ASPPs came about and its impact on the cancer field, as well as highlighting the importance of mentors including Min Wu, Birgit Lane and Sir David Lane in shaping her early career and helping her to navigate a new research world, having moved to the UK from China in the 80s.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Apoptosis , Distinciones y Premios , Neoplasias/patología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Reguladoras de la Apoptosis/genética , Femenino , Humanos , Neoplasias/metabolismo
2.
Mol Syst Biol ; 14(2): e8007, 2018 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-29440389

RESUMEN

Antisense transcription is widespread in genomes. Despite large differences in gene size and architecture, we find that yeast and human genes share a unique, antisense transcription-associated chromatin signature. We asked whether this signature is related to a biological function for antisense transcription. Using quantitative RNA-FISH, we observed changes in sense transcript distributions in nuclei and cytoplasm as antisense transcript levels were altered. To determine the mechanistic differences underlying these distributions, we developed a mathematical framework describing transcription from initiation to transcript degradation. At GAL1, high levels of antisense transcription alter sense transcription dynamics, reducing rates of transcript production and processing, while increasing transcript stability. This relationship with transcript stability is also observed as a genome-wide association. Establishing the antisense transcription-associated chromatin signature through disruption of the Set3C histone deacetylase activity is sufficient to similarly change these rates even in the absence of antisense transcription. Thus, antisense transcription alters sense transcription dynamics in a chromatin-dependent manner.


Asunto(s)
Cromatina/genética , ARN sin Sentido/genética , ARN Mensajero/genética , Saccharomyces cerevisiae/genética , Citoplasma/genética , Galactoquinasa/genética , Regulación Fúngica de la Expresión Génica , Histona Desacetilasas/metabolismo , Humanos , Hibridación Fluorescente in Situ , Estabilidad del ARN , ARN de Hongos/genética , ARN Mensajero/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcripción Genética
3.
Elife ; 62017 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-29058669

RESUMEN

CRISPRi, an adapted CRISPR-Cas9 system, is proposed to act as a strand-specific roadblock to repress transcription in eukaryotic cells using guide RNAs (sgRNAs) to target catalytically inactive Cas9 (dCas9) and offers an alternative to genetic interventions for studying pervasive antisense transcription. Here, we successfully use click chemistry to construct DNA templates for sgRNA expression and show, rather than acting simply as a roadblock, sgRNA/dCas9 binding creates an environment that is permissive for transcription initiation/termination, thus generating novel sense and antisense transcripts. At HMS2 in Saccharomyces cerevisiae, sgRNA/dCas9 targeting to the non-template strand for antisense transcription results in antisense transcription termination, premature termination of a proportion of sense transcripts and initiation of a novel antisense transcript downstream of the sgRNA/dCas9-binding site. This redefinition of the transcriptional landscape by CRISPRi demonstrates that it is not strand-specific and highlights the controls and locus understanding required to properly interpret results from CRISPRi interventions.


Asunto(s)
Proteínas Bacterianas/metabolismo , ADN de Hongos/metabolismo , Endonucleasas/metabolismo , ARN Guía de Kinetoplastida/metabolismo , Saccharomyces cerevisiae/genética , Transcripción Genética , Proteínas Bacterianas/genética , Proteína 9 Asociada a CRISPR , Endonucleasas/genética , Unión Proteica , Saccharomyces cerevisiae/metabolismo
4.
Mol Cell ; 65(4): 685-698.e8, 2017 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-28190769

RESUMEN

RNA polymerase II (Pol2) movement through chromatin and the co-transcriptional processing and fate of nascent transcripts is coordinated by transcription elongation factors (TEFs) such as polymerase-associated factor 1 (Paf1), but it is not known whether TEFs have gene-specific functions. Using strand-specific nucleotide resolution techniques, we show that levels of Paf1 on Pol2 vary between genes, are controlled dynamically by environmental factors via promoters, and reflect levels of processing and export factors on the encoded transcript. High levels of Paf1 on Pol2 promote transcript nuclear export, whereas low levels reflect nuclear retention. Strains lacking Paf1 show marked elongation defects, although low levels of Paf1 on Pol2 are sufficient for transcription elongation. Our findings support distinct Paf1 functions: a core general function in transcription elongation, satisfied by the lowest Paf1 levels, and a regulatory function in determining differential transcript fate by varying the level of Paf1 on Pol2.


Asunto(s)
Núcleo Celular/metabolismo , Proteínas Nucleares/metabolismo , ARN de Hongos/biosíntesis , ARN Mensajero/biosíntesis , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Elongación de la Transcripción Genética , Transporte Activo de Núcleo Celular , Sitios de Unión , Regulación Fúngica de la Expresión Génica , Genotipo , Mutación , Proteínas Nucleares/genética , Fenotipo , Fosforilación , Unión Proteica , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , ARN de Hongos/genética , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Tiempo
5.
Bioessays ; 39(1): 1-12, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28004446

RESUMEN

Tri-methylation of lysine 4 on histone H3 (H3K4me3) is a near-universal chromatin modification at the transcription start site of active genes in eukaryotes from yeast to man and its levels reflect the amount of transcription. Because of this association, H3K4me3 is often described as an 'activating' histone modification and assumed to have an instructive role in the transcription of genes, but the field is lacking a conserved mechanism to support this view. The overwhelming finding from genome-wide studies is that actually very little transcription changes upon removal of most H3K4me3 under steady-state or dynamically changing conditions, including at mammalian CpG island promoters. Instead, rather than a major role in instructing transcription, time-resolved experiments provide more evidence supporting the deposition of H3K4me3 into chromatin as a result of transcription, influencing processes such as memory of previous states, transcriptional consistency between cells in a population and transcription termination.


Asunto(s)
Histonas/metabolismo , Activación Transcripcional , Animales , Eucariontes/genética , Eucariontes/metabolismo , Histonas/química , Humanos , Metilación
6.
Trends Genet ; 32(1): 57-71, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26613890

RESUMEN

Eukaryotic genomes are pervasively transcribed but until recently this noncoding transcription was considered to be simply noise. Noncoding transcription units overlap with genes and genes overlap other genes, meaning genomes are extensively interleaved. Experimental interventions reveal high degrees of interdependency between these transcription units, which have been co-opted as gene regulatory mechanisms. The precise outcome depends on the relative orientation of the transcription units and whether two overlapping transcription events are contemporaneous or not, but generally involves chromatin-based changes. Thus transcription itself regulates transcription initiation or repression at many regions of the genome.


Asunto(s)
Células Eucariotas/fisiología , Genoma , Transcripción Genética , Factores de Transcripción/genética
7.
Nucleic Acids Res ; 43(16): 7823-37, 2015 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-26130720

RESUMEN

Genes from yeast to mammals are frequently subject to non-coding transcription of their antisense strand; however the genome-wide role for antisense transcription remains elusive. As transcription influences chromatin structure, we took a genome-wide approach to assess which chromatin features are associated with nascent antisense transcription, and contrast these with features associated with nascent sense transcription. We describe a distinct chromatin architecture at the promoter and gene body specifically associated with antisense transcription, marked by reduced H2B ubiquitination, H3K36 and H3K79 trimethylation and increased levels of H3 acetylation, chromatin remodelling enzymes, histone chaperones and histone turnover. The difference in sense transcription between genes with high or low levels of antisense transcription is slight; thus the antisense transcription-associated chromatin state is not simply analogous to a repressed state. Using mutants in which the level of antisense transcription is reduced at GAL1, or altered genome-wide, we show that non-coding transcription is associated with high H3 acetylation and H3 levels across the gene, while reducing H3K36me3. Set1 is required for these antisense transcription-associated chromatin changes in the gene body. We propose that nascent antisense and sense transcription have fundamentally distinct relationships with chromatin, and that both should be considered canonical features of eukaryotic genes.


Asunto(s)
Cromatina/metabolismo , Histonas/metabolismo , Regiones Promotoras Genéticas , ARN sin Sentido/biosíntesis , Transcripción Genética , Acetilación , Cromatina/química , Ensamble y Desensamble de Cromatina , Galactoquinasa/genética , Eliminación de Gen , Genes Fúngicos , Chaperonas de Histonas/metabolismo , Nucleosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
8.
Elife ; 3: e03635, 2014 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-25407679

RESUMEN

In yeast, many tandemly arranged genes show peak expression in different phases of the metabolic cycle (YMC) or in different carbon sources, indicative of regulation by a bi-modal switch, but it is not clear how these switches are controlled. Using native elongating transcript analysis (NET-seq), we show that transcription itself is a component of bi-modal switches, facilitating reciprocal expression in gene clusters. HMS2, encoding a growth-regulated transcription factor, switches between sense- or antisense-dominant states that also coordinate up- and down-regulation of transcription at neighbouring genes. Engineering HMS2 reveals alternative mono-, di- or tri-cistronic and antisense transcription units (TUs), using different promoter and terminator combinations, that underlie state-switching. Promoters or terminators are excluded from functional TUs by read-through transcriptional interference, while antisense TUs insulate downstream genes from interference. We propose that the balance of transcriptional insulation and interference at gene clusters facilitates gene expression switches during intracellular and extracellular environmental change.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Familia de Multigenes , Saccharomyces cerevisiae/genética , Transcripción Genética , Carbono/farmacología , Genes Fúngicos , Sitios Genéticos , Redes y Vías Metabólicas/efectos de los fármacos , ARN sin Sentido/genética , ARN sin Sentido/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/efectos de los fármacos , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo
9.
Mol Cell ; 55(5): 733-44, 2014 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-25127513

RESUMEN

Gene transcription responds to stress and metabolic signals to optimize growth and survival. Histone H3 (H3) lysine 4 trimethylation (K4me3) facilitates state changes, but how levels are coordinated with the environment is unclear. Here, we show that isomerization of H3 at the alanine 15-proline 16 (A15-P16) peptide bond is influenced by lysine 14 (K14) and controls gene-specific K4me3 by balancing the actions of Jhd2, the K4me3 demethylase, and Spp1, a subunit of the Set1 K4 methyltransferase complex. Acetylation at K14 favors the A15-P16trans conformation and reduces K4me3. Environmental stress-induced genes are most sensitive to the changes at K14 influencing H3 tail conformation and K4me3. By contrast, ribosomal protein genes maintain K4me3, required for their repression during stress, independently of Spp1, K14, and P16. Thus, the plasticity in control of K4me3, via signaling to K14 and isomerization at P16, informs distinct gene regulatory mechanisms and processes involving K4me3.


Asunto(s)
Lisina/metabolismo , Prolina/metabolismo , Saccharomyces cerevisiae/genética , Cromatina/química , Cromatina/metabolismo , Epigénesis Genética , Histonas/química , Histonas/metabolismo , Isomerismo , Lisina/química , Prolina/química , Estructura Terciaria de Proteína , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Estrés Fisiológico
10.
Microb Cell ; 1(11): 390-392, 2014 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-28357218

RESUMEN

Acetylation of lysine residues has several characterised functions in chromatin. These include neutralization of the lysine's positive charge to directly influence histone tail-DNA/internucleosomal interactions or indirect effects via bromodomain-containing effector proteins. Recently, we described a novel function of lysine acetylation to influence proline isomerization and thus local protein conformation. We found that acetylation of lysine 14 in the histone H3 N-terminal tail (H3K14ac), an intrinsically disordered domain, increased the proportion of neighbouring proline 16 (H3P16) in the trans conformation. This conformation of the tail was associated with reduced tri-methylation on histone H3 lysine 4 (H3K4me3) due to both decreased methylation by the Set1 methyltransferase (with the me3-specific subunit Spp1) and increased demethylation by the demethylase Jhd2. Interestingly, H3K4me3 on individual genes was differentially affected by substitution of H3K14 or H3P16, with ribosomal protein genes losing the least H3K4me3 and environmental stress-induced genes losing the most.

11.
J Mol Biol ; 403(5): 706-22, 2010 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-20691192

RESUMEN

The architectural DNA-binding protein HMGB1 consists of two tandem HMG-box domains joined by a basic linker to a C-terminal acidic tail, which negatively regulates HMGB1-DNA interactions by binding intramolecularly to the DNA-binding faces of both basic HMG boxes. Here we demonstrate, using NMR chemical-shift mapping at different salt concentrations, that the tail has a higher affinity for the B box and that A box-tail interactions are preferentially disrupted. Previously, we proposed a model in which the boxes are brought together in a collapsed, tail-mediated assembly, which is in dynamic equilibrium with a more extended form. Small-angle X-ray scattering data are consistent with such a dynamic equilibrium between collapsed and extended structures and are best represented by an ensemble. The ensembles contain a significantly higher proportion of collapsed structures when the tail is present. (15)N NMR relaxation measurements show that full-length HMGB1 has a significantly lower rate of rotational diffusion than the tail-less protein, consistent with the loss of independent domain motions in an assembled complex. Mapping studies using the paramagnetic spin label MTSL [(1-oxyl-2,2,5,5-tetramethyl-3-pyrrolidin-3-yl)methyl methanethiosulfonate] placed at three locations in the tail confirm our previous findings that the tail binds to both boxes with some degree of specificity. The end of the tail lies further from the body of the protein and is therefore potentially free to interact with other proteins. MTSL labelling at a single site in the A domain (C44) causes detectable relaxation enhancements of B domain residues, suggesting the existence of a "sandwich"-like collapsed structure in which the tail enables the close approach of the basic domains. These intramolecular interactions are presumably important for the dynamic association of HMGB1 with chromatin and provide a mechanism by which protein-protein interactions or posttranslational modifications might regulate the function of the protein at particular sites, or at particular stages in the cell cycle.


Asunto(s)
Proteína HMGB1/química , Proteína HMGB1/metabolismo , Sustitución de Aminoácidos , Animales , Sitios de Unión , Cisteína/química , Espectroscopía de Resonancia por Spin del Electrón , Proteína HMGB1/genética , Técnicas In Vitro , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Estructura Terciaria de Proteína , Ratas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Dispersión del Ángulo Pequeño , Termodinámica , Difracción de Rayos X
12.
J Biol Chem ; 283(9): 5567-76, 2008 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-18165229

RESUMEN

Helicase B (RhlB) is one of the five DEAD box RNA-dependent ATPases found in Escherichia coli. Unique among these enzymes, RhlB requires an interaction with the partner protein RNase E for appreciable ATPase and RNA unwinding activities. To explore the basis for this activating effect, we have generated a di-cistronic vector that overexpresses a complex comprising RhlB and its recognition site within RNase E, corresponding to residues 696-762. Complex formation has been characterized by isothermal titration calorimetry, revealing an avid, enthalpy-favored interaction between the helicase and RNase E-(696-762) with an equilibrium binding constant (Ka) of at least 1 x 10(8) m(-1). We studied ATPase activity of mutants with substitutions within the ATP binding pocket of RhlB and on the putative interaction surface that mediates recognition of RNase E. For comparisons, corresponding mutations were prepared in two other E. coli DEAD box ATPases, RhlE and SrmB. Strikingly, substitutions at a phenylalanine near the Q-motif found in DEAD box proteins boosts the ATPase activity of RhlB in the absence of RNA, but completely inhibits it in its presence. The data support the proposal that the protein-protein and RNA-binding surfaces both communicate allosterically with the ATPase catalytic center. We conjecture that this communication may govern the mechanical power and efficiency of the helicases, and is tuned in individual helicases in accordance with cellular function.


Asunto(s)
Adenosina Trifosfatasas/química , ARN Helicasas DEAD-box/química , Endorribonucleasas/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Complejos Multiproteicos/química , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Regulación Alostérica/fisiología , Secuencias de Aminoácidos/fisiología , Sustitución de Aminoácidos , Sitios de Unión/fisiología , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Mutación Missense , Unión Proteica/fisiología , Estructura Cuaternaria de Proteína/fisiología , ARN Bacteriano/química , ARN Bacteriano/genética , ARN Bacteriano/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...