Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Geroscience ; 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38787463

RESUMEN

Dietary restriction (DR) and hypoxia (low oxygen) extend lifespan in Caenorhabditis elegans through the induction of a convergent downstream longevity gene, fmo-2. Flavin-containing monooxygenases (FMOs) are highly conserved xenobiotic-metabolizing enzymes with a clear role in promoting longevity in nematodes and a plausible similar role in mammals. This makes them an attractive potential target of small molecule drugs to stimulate the health-promoting effects of longevity pathways. Here, we utilize an fmo-2 fluorescent transcriptional reporter in C. elegans to screen a set of 80 compounds previously shown to improve stress resistance in mouse fibroblasts. Our data show that 19 compounds significantly induce fmo-2, and 10 of the compounds induce fmo-2 more than twofold. Interestingly, 9 of the 10 high fmo-2 inducers also extend lifespan in C. elegans. Two of these drugs, mitochondrial respiration chain complex inhibitors, interact with the hypoxia pathway to induce fmo-2, whereas two dopamine receptor type 2 (DRD2) antagonists interact with the DR pathway to induce fmo-2, indicating that dopamine signaling is involved in DR-mediated fmo-2 induction. Together, our data identify nine drugs that each (1) increase stress resistance in mouse fibroblasts, (2) induce fmo-2 in C. elegans, and (3) extend nematode lifespan, some through known longevity pathways. These results define fmo-2 induction as a viable approach to identifying and understanding mechanisms of putative longevity compounds.

2.
Nat Commun ; 14(1): 562, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36732543

RESUMEN

Flavin containing monooxygenases (FMOs) are promiscuous enzymes known for metabolizing a wide range of exogenous compounds. In C. elegans, fmo-2 expression increases lifespan and healthspan downstream of multiple longevity-promoting pathways through an unknown mechanism. Here, we report that, beyond its classification as a xenobiotic enzyme, fmo-2 expression leads to rewiring of endogenous metabolism principally through changes in one carbon metabolism (OCM). These changes are likely relevant, as we find that genetically modifying OCM enzyme expression leads to alterations in longevity that interact with fmo-2 expression. Using computer modeling, we identify decreased methylation as the major OCM flux modified by FMO-2 that is sufficient to recapitulate its longevity benefits. We further find that tryptophan is decreased in multiple mammalian FMO overexpression models and is a validated substrate for FMO-2. Our resulting model connects a single enzyme to two previously unconnected key metabolic pathways and provides a framework for the metabolic interconnectivity of longevity-promoting pathways such as dietary restriction. FMOs are well-conserved enzymes that are also induced by lifespan-extending interventions in mice, supporting a conserved and important role in promoting health and longevity through metabolic remodeling.


Asunto(s)
Caenorhabditis elegans , Triptófano , Animales , Ratones , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Longevidad , Oxigenasas/metabolismo , Carbono , Mamíferos/metabolismo
3.
Front Cell Dev Biol ; 9: 630188, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33644069

RESUMEN

Flavin-Containing Monooxygenases are conserved xenobiotic-detoxifying enzymes. Recent studies have revealed endogenous functions of FMOs in regulating longevity in Caenorhabditis elegans and in regulating aspects of metabolism in mice. To explore the cellular mechanisms of FMO's endogenous function, here we demonstrate that all five functional mammalian FMOs may play similar endogenous roles to improve resistance to a wide range of toxic stresses in both kidney and liver cells. We further find that stress-activated c-Jun N-terminal kinase activity is enhanced in FMO-overexpressing cells, which may lead to increased survival under stress. Furthermore, FMO expression modulates cellular metabolic activity as measured by mitochondrial respiration, glycolysis, and metabolomics analyses. FMO expression augments mitochondrial respiration and significantly changes central carbon metabolism, including amino acid and energy metabolism pathways. Together, our findings demonstrate an important endogenous role for the FMO family in regulation of cellular stress resistance and major cellular metabolic activities including central carbon metabolism.

4.
Geroscience ; 42(6): 1621-1633, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32399915

RESUMEN

HIF-1-mediated adaptation to changes in oxygen availability is a critical aspect of healthy physiology. HIF is regulated by a conserved mechanism whereby EGLN/PHD family members hydroxylate HIF in an oxygen-dependent manner, targeting it for ubiquitination by Von-Hippel-Lindau (VHL) family members, leading to its proteasomal degradation. The activity of the only C. elegans PHD family member, EGL-9, is also regulated by a hydrogen sulfide sensing cysteine-synthetase-like protein, CYSL-1, which is, in turn, regulated by RHY-1/acyltransferase. Over the last decade, multiple seminal studies have established a role for the hypoxic response in regulating longevity, with mutations in vhl-1 substantially extending C. elegans lifespan through a HIF-1-dependent mechanism. However, studies on other components of the hypoxic signaling pathway that similarly stabilize HIF-1 have shown more mixed results, suggesting that mutations in egl-9 and rhy-1 frequently fail to extend lifespan. Here, we show that egl-9 and rhy-1 mutants suppress the long-lived phenotype of vhl-1 mutants. We also show that RNAi of rhy-1 extends lifespan of wild-type worms while decreasing lifespan of vhl-1 mutant worms. We further identify VHL-1-independent gene expression changes mediated by EGL-9 and RHY-1 and find that a subset of these genes contributes to longevity regulation. The resulting data suggest that changes in HIF-1 activity derived by interactions with EGL-9 likely contribute greatly to its role in regulation of longevity.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Aciltransferasas , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas Cullin , Regulación de la Expresión Génica , Longevidad/genética , Oxígeno/metabolismo
5.
Transl Med Aging ; 3: 132-143, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-33241167

RESUMEN

The rapid progress of the past three decades has led the geroscience field near a point where human interventions in aging are plausible. Advances across scientific areas, such as high throughput "-omics" approaches, have led to an exponentially increasing quantity of data available for biogerontologists. To best translate the lifespan and healthspan extending interventions discovered by basic scientists into preventative medicine, it is imperative that the current data are comprehensively utilized to generate testable hypotheses about translational interventions. Building a translational pipeline for geroscience will require both systematic efforts to identify interventions that extend healthspan across taxa and diagnostics that can identify patients who may benefit from interventions prior to the onset of an age-related morbidity. Databases and computational tools that organize and analyze both the wealth of information available on basic biogerontology research and clinical data on aging populations will be critical in developing such a pipeline. Here, we review the current landscape of databases and computational resources available for translational aging research. We discuss key platforms and tools available for aging research, with a focus on how each tool can be used in concert with hypothesis driven experiments to move closer to human interventions in aging.

6.
Nano Lett ; 16(3): 1746-53, 2016 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-26926382

RESUMEN

Current work reports the use of single-stranded RNA toeholds of different lengths to promote the reassociation of various RNA-DNA hybrids, which results in activation of multiple split functionalities inside human cells. The process of reassociation is analyzed and followed with a novel computational multistrand secondary structure prediction algorithm and various experiments. All of our previously designed RNA/DNA nanoparticles employed single-stranded DNA toeholds to initiate reassociation. The use of RNA toeholds is advantageous because of the simpler design rules, the shorter toeholds, and the smaller size of the resulting nanoparticles (by up to 120 nucleotides per particle) compared to the same hybrid nanoparticles with single-stranded DNA toeholds. Moreover, the cotranscriptional assemblies result in higher yields for hybrid nanoparticles with ssRNA toeholds.


Asunto(s)
ADN de Cadena Simple/química , Nanopartículas/química , Interferencia de ARN , ARN Interferente Pequeño/química , Línea Celular Tumoral , ADN de Cadena Simple/genética , Células HeLa , Humanos , Modelos Moleculares , Nanotecnología , Hibridación de Ácido Nucleico , ARN Interferente Pequeño/genética , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...