Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 15(2)2022 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-35057196

RESUMEN

The formation and diffusion of point defects have a detrimental impact on the functionality of devices in which a high quality AlN/GaN heterointerface is required. The present paper demonstrated the heights of the migration energy barriers of native point defects throughout the AlN/GaN heterointerface, as well as the corresponding profiles of energy bands calculated by means of density functional theory. Both neutral and charged nitrogen, gallium, and aluminium vacancies were studied, as well as their complexes with a substitutional III-group element. Three diffusion mechanisms, that is, the vacancy mediated, direct interstitial, and indirect ones, in bulk AlN and GaN crystals, as well at the AlN/GaN heterointerface, were taken into account. We showed that metal vacancies migrated across the AlN/GaN interface, overcoming a lower potential barrier than that of the nitrogen vacancy. Additionally, we demonstrated the effect of the inversion of the electric field in the presence of charged point defects VGa3- and VAl3- at the AlN/GaN heterointerface, not reported so far. Our findings contributed to the issues of structure design, quality control, and improvement of the interfacial abruptness of the AlN/GaN heterostructures.

2.
Materials (Basel) ; 14(21)2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34772058

RESUMEN

Integration of diamond with GaN-based high-electron-mobility transistors improves thermal management, influencing the reliability, performance, and lifetime of GaN-based devices. The current GaN-on-diamond integration technology requires precise interface engineering and appropriate interfacial layers. In this respect, we performed first principles calculation on the stability of diamond-GaN interfaces in the framework of density functional theory. Initially, some stable adsorption sites of C atoms were found on the Ga- and N-terminated surfaces that enabled the creation of a flat carbon monolayer. Following this, a model of diamond-GaN heterojunction with the growth direction [111] was constructed based on carbon adsorption results on GaN{0001} surfaces. Finally, we demonstrate the ways of improving the energetic stability of diamond-GaN interfaces by means of certain reconstructions induced by substitutional dopants present in the topmost GaN substrate's layer.

3.
ACS Appl Mater Interfaces ; 13(6): 7476-7484, 2021 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-33529520

RESUMEN

In this work, we study the thermal degradation of In-rich InxGa1-xN quantum wells (QWs) and propose explanation of its origin based on the diffusion of metal vacancies. The structural transformation of the InxGa1-xN QWs is initiated by the formation of small initial voids created due to agglomeration of metal vacancies diffusing from the layers beneath the QW. The presence of voids in the QW relaxes the mismatch stress in the vicinity of the void and drives In atoms to diffuse to the relaxed void surroundings. The void walls enriched in In atoms are prone for thermal decomposition, what leads to a subsequent disintegration of the surrounding lattice. The phases observed in the degraded areas of QWs contain voids partly filled with crystalline In and amorphous material, surrounded by the rim of high In-content InxGa1-xN or pure InN; the remaining QW between the voids contains residual amount of In. In the case of the InxGa1-xN QWs deposited on the GaN layer doped to n-type or on unintentionally doped GaN, we observe a preferential degradation of the first grown QW, while doping of the underlying GaN layer with Mg prevents the degradation of the closest InxGa1-xN QW. The reduction in the metal vacancy concentration in the InxGa1-xN QWs and their surroundings is crucial for making them more resistant to thermal degradation.

4.
Sci Rep ; 11(1): 2458, 2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33510188

RESUMEN

The aim of this paper is to give an experimental evidence that point defects (most probably gallium vacancies) induce decomposition of InGaN quantum wells (QWs) at high temperatures. In the experiment performed, we implanted GaN:Si/sapphire substrates with helium ions in order to introduce a high density of point defects. Then, we grew InGaN QWs on such substrates at temperature of 730 °C, what caused elimination of most (but not all) of the implantation-induced point defects expanding the crystal lattice. The InGaN QWs were almost identical to those grown on unimplanted GaN substrates. In the next step of the experiment, we annealed samples grown on unimplanted and implanted GaN at temperatures of 900 °C, 920 °C and 940 °C for half an hour. The samples were examined using Photoluminescence, X-ray Diffraction and Transmission Electron Microscopy. We found out that the decomposition of InGaN QWs started at lower temperatures for the samples grown on the implanted GaN substrates what provides a strong experimental support that point defects play important role in InGaN decomposition at high temperatures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...