Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Gels ; 7(4)2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34698162

RESUMEN

Ketorolac tromethamine is a non-steroidal anti-inflammatory drug used in the management of severe pain. The half-life of Ketorolac tromethamine is within the range of 2.5-4 h. Hence, repeated doses of Ketorolac tromethamine are needed in a day to maintain the therapeutic level. However, taking several doses of Ketorolac tromethamine in a day generates certain complications, such as acute renal failure and gastrointestinal ulceration. Therefore, a polymeric-controlled drug delivery system is needed that could prolong the release of Ketorolac tromethamine. Therefore, in the current study, pH-responsive carbopol 934/sodium polystyrene sulfonate-co-poly(acrylic acid) (CP/SpScPAA) hydrogels were developed by the free radical polymerization technique for the controlled release of Ketorolac tromethamine. Monomer acrylic acid was crosslinked with the polymers carbopol 934 and sodium polystyrene sulfonate by the cross-linker N',N'-methylene bisacrylamide. Various studies were conducted to evaluate and assess the various parameters of the fabricated hydrogels. The compatibility of the constituents used in the preparation of hydrogels was confirmed by FTIR analysis, whereas the thermal stability of the unreacted polymers and developed hydrogels was analyzed by TGA and DSC, respectively. A smooth and porous surface was indicated by SEM. The crystallinity of carbopol 934, sodium polystyrene sulfonate, and the prepared hydrogels was evaluated by PXRD, which revealed a reduction in the crystallinity of reactants for the developed hydrogels. The pH sensitivity of the polymeric hydrogel networks was confirmed by dynamic swelling and in vitro release studies with two different pH media i.e., pH 1.2 and 7.4, respectively. Maximum swelling was exhibited at pH 7.4 compared to pH 1.2 and, likewise, a greater percent drug release was perceived at pH 7.4. Conclusively, we can demonstrate that the developed pH-sensitive hydrogel network could be employed as a suitable carrier for the controlled delivery of Ketorolac tromethamine.

2.
Gels ; 7(2)2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-34207688

RESUMEN

Different combinations of polymers, aspartic acid (ASP), alginic acid (AL), and monomer acrylic acid (AA) were crosslinked in the presence of an initiator ammonium peroxodisulfate (APS) and cross-linker ethylene glycol dimethacrylate (EGDMA) to develop aspartic acid/alginic acid-co-poly(acrylic acid) (ASP/ALPAA) (semi-interpenetrating polymer network (SIPN)) hydrogels by the free radical polymerization technique for the controlled delivery of ibuprofen (IBP). Various studies such as dynamic swelling studies, drug loading, in vitro drug release and sol-gel analysis were carried out for the hydrogels. Higher swelling was observed at higher pH 7.4 as compared to lower pH 1.2, due to the presence of carboxylic groups of polymers and the monomer. Hence, pH-dependent swelling was exhibited by the developed hydrogels which led to a pH-dependent drug release and vice versa. The structural properties of the hydrogels were assessed by FTIR, PXRD, TGA, DSC, and SEM which confirmed the fabrication and stability of the developed structure. FTIR analysis revealed the reaction of both polymers with the monomer during the polymerization process and confirmed the overlapping of the monomer on the backbone of the both polymers. The disappearance of high intense crystalline peaks and the encapsulation of the drug by the hydrogel network was confirmed by PXRD. TGA and DSC showed that the developed hydrogels were thermally more stable than their basic ingredients. Similarly, the surface morphology of the hydrogels was analyzed by SEM and showed a smooth surface with few pores. Conclusively, ASP/ALPAA hydrogels have the potential to deliver IBP for a long period of time in a controlled way.

3.
Bioorg Med Chem Lett ; 25(10): 2074-7, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25890802

RESUMEN

Nanodiamond has recently received considerable attention due to the various possible applications in medical field such as drug delivery and bio-labeling. For this purpose suitable and effective surface functionalization of the diamond material are required. A versatile and reproducible surface modification method of nanoscale diamond is essential for functionalization. We introduce the input of microwave energy to assist the functionalization of nanodiamond surface. The feasibility of such a process is illustrated by comparing the biological assay of ND-paclitaxel synthesized by conventional and microwave irradiating. Using a microwave we manage to have approximately doubled grafted molecules per nanoparticle of nanodiamond.


Asunto(s)
Antineoplásicos Fitogénicos/química , Diamante , Microondas , Nanoestructuras , Paclitaxel/química
4.
Bioorg Med Chem Lett ; 24(22): 5247-50, 2014 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-25305687

RESUMEN

The interactions of gefitinib (Iressa) in EGFR are hydrogen bonding and van der Waals forces through quinazoline and aniline rings. However the morpholino group of gefitinib is poorly ordered due to its weak electron density. A series of novel piperazino analogues of gefitinib where morpholino group substituted with various piperazino groups were designed and synthesized. Most of them indicated significant anti-cancer activities against human cancer cell lines. In particular, compounds 52-54 showed excellent potency against cancer cells. Convergent synthetic approach has been developed for the synthesis of gefitinib intermediate which can lead to gefitinib as well as numerous analogues.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Quinazolinas/química , Quinazolinas/farmacología , Antineoplásicos/síntesis química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Gefitinib , Humanos , Piperazinas/química , Quinazolinas/síntesis química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA