Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 744
Filtrar
2.
Discov Med ; 36(187): 1657-1671, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39190381

RESUMEN

BACKGROUND: Periodontitis is the leading cause of tooth loss and can exacerbate various systemic inflammatory conditions. Periodontal ligament stem cells (PDLSCs) stand out as prominent and favorable candidates for promoting periodontal tissue regeneration. This study aimed to investigate whether the protease-activated receptor type 1 (PAR1) can mitigate the sodium butyrate (NaB)-induced PDLSCs osteogenesis inhibition and unravel the underlying mechanism. METHODS: Public datasets from the Gene Expression Omnibus (GEO) were utilized to analyze differentially expressed genes (DEGs) in periodontitis and subsequent Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. PDLSCs were cultured normally in control medium (CM) as the negative control or in osteogenic medium (OM) to induce osteogenesis. PAR1 was either activated or suppressed using a selective agonist or antagonist (OM+agonist and OM+antagonist). The evaluation of PDLSCs osteogenesis was based on the levels of osteogenesis-related markers, including runt-related transcription factor 2 (RUNX2), osterix (OSX), osteocalcin (OCN), and osteopontin (OPN), alkaline phosphatase (ALP) activity, and calcium concentration. Additionally, cell proliferation and osteogenic differentiation were measured through the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and Alizarin Red Staining. To determine the PAR1 targeting the limb development membrane protein 1 (LMBR1)/bone morphogenetic protein (BMP) pathway, LMBR1 was upregulated through cell transfection and BMP2 was inhibited using the selective inhibitor Noggin protein. Finally, NaB was introduced into PDLSCs to investigate the effect on NaB-induced inhibition of PDLSCs osteogenesis. RESULTS: PAR1, RUNX2, OSX, OCN, OPN, proliferation, ALP activity, calcium concentration, osteogenic differentiation, BMP2, and BMP4 exhibited significant increases in PDLSCs cultured in OM (p < 0.01). These parameters were further elevated by PAR1 agonist and conversely reduced by PAR1 antagonist (p < 0.01). Conversely, LMBR1 was decreased in PDLSCs cultured in OM (p < 0.001), with further reduction induced by PAR1 agonist and a reverse increase observed with PAR1 antagonist (p < 0.001). OE-LMBR1 transfection successfully elevated LMBR1 levels, subsequently inhibiting BMP2 and BMP4 (p < 0.001). Meanwhile, the Noggin protein effectively suppressed BMP2 and BMP4 (p < 0.001). All observed osteogenesis-related changes were reversed by the increased LMBR1 or inhibition of the BMP pathway (p < 0.001). Furthermore, NaB suppressed osteogenesis-related changes in OM-cultured PDLSCs (p < 0.001), and these effects were entirely reversed by PAR1 agonist (p < 0.001). Conversely, the increased LMBR1 or inhibited BMP pathway disrupted the osteogenesis reversion induced by PAR1 agonist (p < 0.001). CONCLUSION: The activation of PAR1, through suppressing LMBR1 signaling and activating BMP pathway, demonstrates the ability to enhance the osteogenesis of PDLSCs and mitigate the inhibitory effects on PDLSCs osteogenesis caused by NaB.


Asunto(s)
Osteogénesis , Ligamento Periodontal , Receptor PAR-1 , Células Madre , Ligamento Periodontal/citología , Ligamento Periodontal/efectos de los fármacos , Humanos , Osteogénesis/efectos de los fármacos , Células Madre/metabolismo , Células Madre/efectos de los fármacos , Células Madre/citología , Receptor PAR-1/metabolismo , Receptor PAR-1/genética , Receptor PAR-1/antagonistas & inhibidores , Ácido Butírico/farmacología , Células Cultivadas , Diferenciación Celular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Proteína Morfogenética Ósea 2/metabolismo , Periodontitis/metabolismo , Periodontitis/patología , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética
3.
Inorg Chem ; 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39190605

RESUMEN

Direct synthesis of germanosilicate zeolites with low Ge content and improved hydrothermal stability is a great challenge. Herein, we successfully achieve the direct synthesis of IWS zeolite with a Si/Ge ratio higher than 4 for the first time. High silica IWS zeolites can be prepared in a wide range of Si/Ge ratios (4-16) by utilizing bulky 1,3-bis(1-adamantyl)-imidazolium (BAdaI+) as an efficient organic structure-directing agent from the concentrated synthesis gel under fluoride conditions. It is proven by a series of characterizations that Ge atoms preferentially occupy the double-four-ring (D4R) units. Theoretical calculations reveal the preferential interactions of guest organic structure-directing agents (OSDAs) and host IWS zeolites with different Si/Ge ratios. The introduction of more Ge atoms cannot improve the host-guest interaction when the BAdaI+ molecule is accommodated within the nanopores of IWS zeolite compared to other OSDAs. The obtained IWS zeolite shows an extremely high specific surface area (905 m2/g) and pore volume (1.31 cm3/g). Due to the low Ge content, IWS zeolite exhibits outstanding hydrothermal stability and experiences high temperature steam heating with no loss of crystallinity and only a slight loss of microporosity.

4.
Oral Oncol ; 157: 106987, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39133972

RESUMEN

PURPOSE: To establish and validate a delta-radiomics-based model for predicting progression-free survival (PFS) in patients with locoregionally advanced nasopharyngeal carcinoma (LA-NPC) following induction chemotherapy (IC). METHODS AND MATERIALS: A total of 250 LA-NPC patients (training cohort: n = 145; validation cohort: n = 105) were enrolled. Radiomic features were extracted from MRI scans taken before and after IC, and changes in these features were calculated. Following feature selection, a delta-radiomics signature was constructed using LASSO-Cox regression analysis. A prognostic nomogram incorporating independent clinical indicators and the delta-radiomics signature was developed and assessed for calibration and discrimination. Risk stratification by the nomogram was evaluated using Kaplan-Meier methods. RESULTS: The delta-radiomics signature, consisting of 12 features, was independently associated with prognosis. The nomogram, integrating the delta-radiomics signature and clinical factors demonstrated excellent calibration and discrimination. The model achieved a Harrell's concordance index (C-index) of 0.848 in the training cohort and 0.820 in the validation cohort. Risk stratification identified two groups with significantly different PFS rates. The three-year PFS for high-risk patients who received concurrent chemoradiotherapy (CCRT) or radiotherapy plus adjuvant chemotherapy (RT+AC) after IC was significantly higher than for those who received RT alone, reaching statistical significance. In contrast, for low-risk patients, the three-year PFS after IC was slightly higher for those who received CCRT or RT+AC compared to those who received RT alone; however, this difference did not reach statistical significance. CONCLUSIONS: Our delta MRI-based radiomics model could be useful for predicting PFS and may guide subsequent treatment decisions after IC in LA-NPC.


Asunto(s)
Quimioterapia de Inducción , Imagen por Resonancia Magnética , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Nomogramas , Radiómica , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Quimioterapia de Inducción/métodos , Imagen por Resonancia Magnética/métodos , Carcinoma Nasofaríngeo/diagnóstico por imagen , Carcinoma Nasofaríngeo/tratamiento farmacológico , Carcinoma Nasofaríngeo/mortalidad , Carcinoma Nasofaríngeo/radioterapia , Neoplasias Nasofaríngeas/diagnóstico por imagen , Neoplasias Nasofaríngeas/tratamiento farmacológico , Neoplasias Nasofaríngeas/mortalidad , Neoplasias Nasofaríngeas/radioterapia , Pronóstico , Resultado del Tratamiento
5.
J Am Chem Soc ; 146(31): 21769-21777, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39072677

RESUMEN

Aryl amines are one of the most common moieties in biologically active molecules, and approximately 37% of drug candidates contain aromatic amines. Recent advancements in medicinal chemistry, coined "escaping from flatland", have led to a greater focus on accessing highly functionalized C (sp3)-rich amines to improve the physicochemical and pharmacokinetic properties of compounds. This article presents a modular and operationally straightforward three-component alkyl Petasis boron-Mannich (APBM) reaction that utilizes ubiquitous starting materials, including amines, aldehydes, and alkyl boronates. By adaptation of this transformation to high-throughput experimentation (HTE), it offers rapid access to an array of diverse C(sp3)-rich complex amines, amenable for rapid identification of drug candidates.

6.
Mol Biol Evol ; 41(8)2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39041196

RESUMEN

Cyanobacteriota, the sole prokaryotes capable of oxygenic photosynthesis (OxyP), occupy a unique and pivotal role in Earth's history. While the notion that OxyP may have originated from Cyanobacteriota is widely accepted, its early evolution remains elusive. Here, by using both metagenomics and metatranscriptomics, we explore 36 metagenome-assembled genomes from hot spring ecosystems, belonging to two deep-branching cyanobacterial orders: Thermostichales and Gloeomargaritales. Functional investigation reveals that Thermostichales encode the crucial thylakoid membrane biogenesis protein, vesicle-inducing protein in plastids 1 (Vipp1). Based on the phylogenetic results, we infer that the evolution of the thylakoid membrane predates the divergence of Thermostichales from other cyanobacterial groups and that Thermostichales may be the most ancient lineage known to date to have inherited this feature from their common ancestor. Apart from OxyP, both lineages are potentially capable of sulfide-driven AnoxyP by linking sulfide oxidation to the photosynthetic electron transport chain. Unexpectedly, this AnoxyP capacity appears to be an acquired feature, as the key gene sqr was horizontally transferred from later-evolved cyanobacterial lineages. The presence of two D1 protein variants in Thermostichales suggests the functional flexibility of photosystems, ensuring their survival in fluctuating redox environments. Furthermore, all MAGs feature streamlined phycobilisomes with a preference for capturing longer-wavelength light, implying a unique evolutionary trajectory. Collectively, these results reveal the photosynthetic flexibility in these early-diverging cyanobacterial lineages, shedding new light on the early evolution of Cyanobacteriota and their photosynthetic processes.


Asunto(s)
Cianobacterias , Fotosíntesis , Fotosíntesis/genética , Cianobacterias/genética , Cianobacterias/metabolismo , Evolución Biológica , Filogenia , Oxígeno/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Evolución Molecular
7.
Artículo en Inglés | MEDLINE | ID: mdl-39009321

RESUMEN

Locally recurrent nasopharyngeal carcinoma (NPC) presents substantial challenges in clinical management. Although postoperative re-irradiation (re-RT) has been acknowledged as a potential treatment option, standardized guidelines and consensus regarding the use of re-RT in this context are lacking. This article provides a comprehensive review and summary of international recommendations on postoperative management for potentially resectable locally recurrent NPC, with a special focus on postoperative re-RT. A thorough search was conducted to identify relevant studies on postoperative re-RT for locally recurrent NPC. Controversial issues, including resectability criteria, margin assessment, indications for postoperative re-RT, and the optimal dose and method of re-RT, were addressed through a Delphi consensus process. The consensus recommendations emphasize the need for a clearer and broader definition of resectability, highlighting the importance of achieving clear surgical margins, preferably through an en bloc approach with frozen section margin assessment. Furthermore, these guidelines suggest considering re-RT for patients with positive or close margins. Optimal postoperative re-RT doses typically range around 60 Gy, and hyperfractionation has shown promise in reducing toxicity. These guidelines aim to assist clinicians in making evidence-based decisions and improving patient outcomes in the management of potentially resectable locally recurrent NPC. By addressing key areas of controversy and providing recommendations on resectability, margin assessment, and re-RT parameters, these guidelines serve as a valuable resource for clinical experts involved in the treatment of locally recurrent NPC.

8.
Nat Commun ; 15(1): 6407, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39079989

RESUMEN

Soil extractable nitrate, ammonium, and organic nitrogen (N) are essential N sources supporting primary productivity and regulating species composition of terrestrial plants. However, it remains unclear how plants utilize these N sources and how surface-earth environments regulate plant N utilization. Here, we establish a framework to analyze observational data of natural N isotopes in plants and soils globally, we quantify fractional contributions of soil nitrate (fNO3-), ammonium (fNH4+), and organic N (fEON) to plant-used N in soils. We find that mean annual temperature (MAT), not mean annual precipitation or atmospheric N deposition, regulates global variations of fNO3-, fNH4+, and fEON. The fNO3- increases with MAT, reaching 46% at 28.5 °C. The fNH4+ also increases with MAT, achieving a maximum of 46% at 14.4 °C, showing a decline as temperatures further increase. Meanwhile, the fEON gradually decreases with MAT, stabilizing at about 20% when the MAT exceeds 15 °C. These results clarify global plant N-use patterns and reveal temperature rather than human N loading as a key regulator, which should be considered in evaluating influences of global changes on terrestrial ecosystems.


Asunto(s)
Ecosistema , Nitratos , Nitrógeno , Plantas , Suelo , Temperatura , Suelo/química , Nitrógeno/metabolismo , Nitrógeno/análisis , Plantas/metabolismo , Nitratos/metabolismo , Nitratos/análisis , Compuestos de Amonio/metabolismo , Compuestos de Amonio/análisis , Isótopos de Nitrógeno/análisis , Isótopos de Nitrógeno/metabolismo
9.
Phytomedicine ; 132: 155851, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39018943

RESUMEN

BACKGROUND: Evodiamine (EVO) is one of the primary components of Evodia rutaecarpa and has been found to have a positive therapeutic effect on various digestive system diseases. However, no systematic review has been conducted on the research progress and mechanisms of EVO in relation to digestive system diseases, and its toxicity. PURPOSE: This study aimed to provide a reference for future research in this field. STUDY DESIGN: A systematic review and meta-analysis of the research progress, mechanisms, and toxicity of EVO in the treatment of digestive system diseases. METHODS: Five electronic databases were utilized to search for relevant experiments. We conducted a comprehensive review and meta-analysis of the pertinent literature following the guidelines of Preferred Reporting Items for Systematic Review and Meta-analysis (PRISMA). RESULTS: EVO's animal experiments in digestive system diseases primarily focus on colorectal cancer, gastric ulcers, liver cancer, liver fibrosis, ulcerative colitis, colitis-associated cancer, and functional gastrointestinal disorders. EVO also has positive effects on pancreatic cancer, radiation enteritis, gastric cancer, tongue squamous cancer, hepatitis B, oral cancer, and esophageal cancer in vivo. EVO's in cellular experiments primarily focus on SGC7901, HT29, HCT-116, and HepG2 cells. EVO also exhibits positive effects on SW480, LoVo, BGC-823, AGS, COLO-205, MKN45, SMMC-7721, Bel-7402, QGY7-701, PANC-1, SW1990, BxPC-3, HSC4, MC3, HONE1, and CNE1 cells in vitro. The potential common pathways include TGF-ß, PI3K-AKT, Wnt, ErbB, mTOR, MAPK, HIF-1, NOD-like receptor, NF-κB, VEGF, JAK-STAT, AMPK, Toll-like receptor, EGFR, Ras, TNF, AGE-RAGE, Relaxin, FoxO, IL-17, Hippo, and cAMP. The mechanisms of EVO on ulcerative colitis, gastric cancer, and HCT116 cells are still controversial in vivo. EVO may have a bidirectional regulatory effect on functional gastrointestinal disorders through calcium signaling. The mechanisms of EVO on HCT116, HT29, SW480, AGS, COLO-205, and SW1990 cells are still controversial in vitro. The question of whether EVO has obvious toxicity is controversial. CONCLUSION: In both cellular and animal experiments, EVO has demonstrated positive impacts on digestive system diseases. Nevertheless, additional in vivo and in vitro research is required to confirm the beneficial effects and mechanisms of EVO on digestive system diseases, as well as its potential toxicity.


Asunto(s)
Enfermedades del Sistema Digestivo , Evodia , Quinazolinas , Quinazolinas/farmacología , Humanos , Animales , Enfermedades del Sistema Digestivo/tratamiento farmacológico , Evodia/química , Extractos Vegetales/farmacología
10.
J Transl Med ; 22(1): 709, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080766

RESUMEN

BACKGROUND: Chemokine (C-C motif) receptor 8 (CCR8) is a chemokine receptor selectively expressed on tumor-infiltrating regulatory T cells (Tregs). Strong immunosuppression mediated by CCR8+ Tregs observed in breast and lung malignancies suggest for their functional significance in cancer therapy. To date, detailed characterization of tumor-infiltrating CCR8+ Tregs cells in colorectal cancer (CRC) is limited. METHODS: To study the presence and functional involvement of CCR8+ Tregs in CRC, we analyzed the proportions of CCR8-expressing T cells in different T cell subsets in tumor and adjacent normal tissues and peripheral blood mononuclear cells (PBMCs) from CRC patients by Flow cytometry. Also, we compared the distribution of CCR8+ T cells in malignant tissues and peripheral lymphoid organs from a subcutaneous CRC murine model. Bioinformatic analysis was performed to address the significance of CCR8 expression levels in CRC prognosis, immune regulatory gene expression profiles and potential molecular mechanisms associated with CCR8+ Tregs in CRC tumors. Further, we administrated an anti-CCR8 monoclonal antibody to CT26 tumor-bearing mice and examined the antitumor activity of CCR8-targeted therapy both in vivo and in an ex vivo confirmative model. RESULTS: Here, we showed that Tregs was predominantly presented in the tumors of CRC patients (13.4 ± 5.8, p < 0.0001) and the CRC subcutaneous murine model (35.0 ± 2.6, p < 0.0001). CCR8 was found to be preferentially expressed on these tumor-infiltrating Tregs (CRC patients: 63.6 ± 16.0, p < 0.0001; CRC murine model: 65.3 ± 9.5, p < 0.0001), which correlated with poor survival. We found that majority of the CCR8+ Tregs expressed activation markers and exhibited strong suppressive functions. Treatment with anti-CCR8 antibody hampered the growth of subcutaneous CRC tumor through effectively restoring the anti-tumor immunity of CD4+ conventional T cells (CD4+ Tconvs) and CD8+ T cells, which was confirmed in the ex vivo examinations. CONCLUSIONS: Collectively, these findings illustrate the importance of CCR8+ Tregs for an immunosuppressive microenvironment in CRC tumors by functional inhibition of CD4+ Tconvs and CD8+ T cells, and suggest for the applicable value of CCR8-targeted therapy for CRC.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias Colorrectales , Linfocitos Infiltrantes de Tumor , Receptores CCR8 , Linfocitos T Reguladores , Animales , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Línea Celular Tumoral , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/patología , Inmunidad , Linfocitos Infiltrantes de Tumor/inmunología , Ratones Endogámicos BALB C , Linfocitos T Reguladores/inmunología , Anciano
11.
Zhongguo Zhong Yao Za Zhi ; 49(12): 3280-3287, 2024 Jun.
Artículo en Chino | MEDLINE | ID: mdl-39041090

RESUMEN

Based on the insulin receptor substrate(IRS)/phosphoinositide 3-kinase(PI3K)/protein kinase B(Akt) pathway, the intervention effect of Yupingfeng Powder on type 2 diabetes mellitus(T2DM) rats was studied, and the potential mechanism of improving T2DM hepatic insulin resistance was explored. A T2DM rat model was established by feeding with high-fat and high-sugar feed combined with intraperitoneal injection of streptozotocin. Successfully modeled rats were selected and divided into a model group, a positive control group(MET), and a Yupingfeng Powder group. At the same time, a blank group was set up, and corresponding drugs were given by gavage. The model group and blank group were given an equal amount of physiological saline by gavage. During the experiment, body mass and fasting blood glucose were regularly measured, and glucose tolerance and insulin tolerance were measured at the end of the experiment. After the experiment, the levels of blood glucose, insulin, blood lipids, and related liver function indicators were measured; changes in liver pathological damage were observed, levels of liver monoamine oxidase were detected, and qRT-PCR was used to detect mRNA expression levels of IRS/PI3K/Akt pathway related genes. Compared with the model group, the Yupingfeng Powder group had an increase in body weight, a decrease in fasting blood glucose, fasting insulin, and steady-state model evaluation index, a decrease in the area under the curve of glucose tolerance and insulin tolerance tests, a decrease in serum total cholesterol, triglycerides, and low-density lipoprotein cholesterol content, and an increase in high-density lipoprotein cholesterol content. Compared with the model group, the Yupingfeng Powder group showed a decrease in liver monoamine oxidase levels, a decrease in serum aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and total bilirubin levels, and an increase in total protein and albumin levels. Hematoxylin-eosin(HE) staining showed a reduction in pathological liver cell damage. Compared with the model group, the Yupingfeng Powder group showed a significant increase in the mRNA expression levels of IRS1, PI3K, and Akt in the liver of rats, as well as a significant decrease in the mRNA expression levels of interleukin-6(IL-6) and tumor necrosis factor-α(TNF-α). This indicates that Yupingfeng Powder can regulate the IRS/PI3K/Akt signaling pathway and glucose and lipid metabolism disorders, increase insulin sensitivity, improve hepatic insulin resistance, and thus play a therapeutic role in T2DM.


Asunto(s)
Diabetes Mellitus Tipo 2 , Medicamentos Herbarios Chinos , Proteínas Sustrato del Receptor de Insulina , Resistencia a la Insulina , Hígado , Fosfatidilinositol 3-Quinasas , Polvos , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Animales , Ratas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/administración & dosificación , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Hígado/metabolismo , Hígado/efectos de los fármacos , Masculino , Proteínas Sustrato del Receptor de Insulina/metabolismo , Proteínas Sustrato del Receptor de Insulina/genética , Transducción de Señal/efectos de los fármacos , Ratas Sprague-Dawley , Glucemia/metabolismo , Insulina/metabolismo , Humanos
12.
Materials (Basel) ; 17(14)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39063721

RESUMEN

CrSBr is a recently discovered two-dimensional anti-ferromagnet. It has attracted much attention due to its superior properties for potential optoelectronic and spintronic applications. However, its complex refractive index with layer dependence has not been systematically studied yet. In this work, we studied the room-temperature complex refractive indices of thin CrSBr flakes of different thicknesses in the visible light range. Using micro-reflectance spectroscopy, we measured the optical contrast of thin CrSBr flakes with respect to different substrates. The complex refractive index was extracted by modeling the optical contrast with the Fresnel equations. We extracted the band gap values of CrSBr in the few-layer limit. We determined the band gaps for monolayer, bilayer, and trilayer CrSBr to be 1.88 eV, 1.81 eV, and 1.77 eV, respectively. As a comparison, the band gap for multilayer CrSBr is outside our measured range, that is, below 1.55 eV. Our results suggest that the band gap of CrSBr decreases as thickness increases.

13.
Toxicon ; 247: 107850, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-38971137

RESUMEN

BACKGROUND: Enterobacter cloacae insecticidal proteins have been reported to kill Galleria mellonella larvae through affecting their midgut microbiome. However, the mechanisms involved remain unclear. Here we aim to investigate how the insecticidal proteins act on the midgut Duox-ROS system and microbial community of G. mellonella larvae. METHODS: Reverse transcription qPCR and fluorescence probes were utilized to assess the Duox expression levels and to evaluate quantitative changes of the ROS levels. Sequencing of the 16S rRNA gene sequences of the midgut bacteria of G. mellonella larvae was conducted for further analyses of bacterial diversity, composition, and abundance. RESULTS: After the injection of the insecticidal proteins, the Duox expression levels first increased within 28 h, then dramatically peaked at 36 h, and slowly decreased thereafter. Simultaneously, the ROS levels increased significantly at 36 h, peaked at 48 h, and rapidly declined to the normal level at 60 h. Responsive to the change of the ROS levels, the structure of the midgut microbial community was altered substantially, compared to that of the untreated larvae. The relative abundance of Enterobacteriaceae and other specific pathogenic bacteria increased significantly, whereas that of Lactobacillus decreased sharply. Importantly, notable shifts were observed in the crucial midgut predicted metabolic functions, including membrane transportation, carbohydrate metabolism, and amino acid metabolism. CONCLUSION: Insecticidal proteins of E. cloacae kill G. mellonella larvae mainly through generation of high oxidative stress, alterations of the midgut microbial community and function, and damage to the physiological functions. These findings provide insights into the inhibition mechanism of E. cloacae insecticidal proteins to G. mellonella larvae.


Asunto(s)
Enterobacter cloacae , Microbioma Gastrointestinal , Larva , Mariposas Nocturnas , Especies Reactivas de Oxígeno , Animales , Larva/microbiología , Mariposas Nocturnas/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Insecticidas , Proteínas Bacterianas , ARN Ribosómico 16S , Oxidasas Duales
14.
Angew Chem Int Ed Engl ; : e202407075, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38990170

RESUMEN

Sodium metal batteries (SMBs) have received increasing attention due to the abundant sodium resources and high energy density, but suffered from the sluggish interfacial kinetic and unstable plating/stripping of sodium anode at low temperature, especially when matched with ester electrolytes. Here, we develop a stable ultra-low-temperature SMBs with high-capacity retention at -50°C in a weak solvated carbonate ester-based electrolyte, combined with an electrodeposited Na (Cu/Na) anode. The Cu/Na anode with electrochemically activated "deposited sodium" and stable inorganic-rich solid electrolyte interphase (SEI) was favor for the fast Na+ migration, therefore accelerating the interfacial kinetic process. As a result, the Cu/Na || NaCrO2 battery exhibited the highest capacity retention (compared to room-temperature capacity) in carbonate ester-based SMBs (98.05% at -25°C, 91.3% at -40°C, 87.9% at -50°C, respectively). The cyclic stability of 350 cycles at -25°C with a high energy efficiency of 96.15% and 70 cycles at -50°C can be achieved. Even in chill atmospheric environment with the fluctuant temperature, the battery can still operate over one month. This work provides a new opportunity for the development of low-temperature carbonate ester-based SMBs.

15.
Angew Chem Int Ed Engl ; : e202409096, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982569

RESUMEN

Three dimensional (3D) framework structure is one of the most effective ways to achieve uniform zinc deposition and thus inhibit the Zn dendrites growth in working Zn metallic anode. A major challenge facing for the most commonly used 3D zincophilic hosts is that the zincophilic layer tends to peel off during repeatedly cycling, making it less stable. Herein, for the first time, a hetero-superlattice Zn/ZnLi (HS-Zn/ZnLi) anode containing periodic arrangements of metallic Zn phase and zincophilic ZnLi phase at the nanoscale, is well designed and fabricated via electrochemical lithiation method. Based on binding energy and stripping energy calculation, and the operando optical observation of plating/stripping behaviors, the zincophilic ZnLi sites with a strong Zn adsorption ability in the interior of the 3D ZnLi framework structure can effectively guide uniform Zn nucleation and dendrite-free zinc deposition, which significantly improves the cycling stability of the HS-Zn/ZnLi alloy (over 2800 h without a short-circuit at 2 mA cm-2). More importantly, this strategy can be extended to HS-Zn/ZnNa and HS-Zn/ZnK anodes that are similar to the HS-Zn/ZnLi microstructure, also displaying significantly enhanced cycling performances in AZIBs. This study can provide a novel strategy to develop the dendrite-free metal anodes with stable cycling performance.

17.
Nat Rev Chem ; 8(8): 605-627, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38982260

RESUMEN

Benzenes, the most ubiquitous structural moiety in marketed small-molecule drugs, are frequently associated with poor 'drug-like' properties, including metabolic instability, and poor aqueous solubility. In an effort to overcome these limitations, recent developments in medicinal chemistry have demonstrated the improved physicochemical profiles of C(sp3)-rich bioisosteric scaffolds relative to arenes. In the past two decades, we have witnessed an exponential increase in synthetic methods for accessing saturated bioisosteres of monosubstituted and para-substituted benzenes. However, until recent discoveries, analogous three-dimensional ortho-substituted and meta-substituted biososteres have remained underexplored, owing to their ring strain and increased s-character hybridization. This Review summarizes the emerging synthetic methodologies to access such saturated motifs and their impact on the application of bioisosteres for ortho-substituted, meta-substituted and multi-substituted benzene rings. It concludes with a perspective on the development of next-generation bioisosteres, including those within novel chemical space.

18.
Molecules ; 29(12)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38930793

RESUMEN

The toll-like receptor 4 (TLR4) signaling pathway constitutes an intricate network of protein interactions primarily involved in inflammation and cancer. This pathway triggers intracellular signaling cascades, modulating transcription factors that regulate gene expression related to immunity and malignancy. Previous studies showed that colon cancer patients with low TLR4 expression exhibit extended survival times and the TLR4 signaling pathway holds a significant role in CRC pathogenesis. In recent years, traditional Chinese medicines (TCMs) have garnered substantial attention as an alternative therapeutic modality for CRC, primarily due to their multifaceted composition and ability to target multiple pathways. Emerging evidence indicates that specific TCM products, such as andrographolide, rosmarinic acid, baicalin, etc., have the potential to impede CRC development through the TLR4 signaling pathway. Here, we review the role and biochemical processes of the TLR4 signaling pathway in CRC, and natural products from TCMs affecting the TLR4 pathway. This review sheds light on potential treatment strategies utilizing natural TLR4 inhibitors for CRC, which contributes to the advancement of research and accelerates their clinical integration into CRC treatment.


Asunto(s)
Productos Biológicos , Neoplasias Colorrectales , Medicamentos Herbarios Chinos , Transducción de Señal , Receptor Toll-Like 4 , Humanos , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 4/antagonistas & inhibidores , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Transducción de Señal/efectos de los fármacos , Productos Biológicos/uso terapéutico , Productos Biológicos/farmacología , Productos Biológicos/química , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Medicina Tradicional China , Animales , Medicina de Hierbas/métodos
19.
J Hazard Mater ; 476: 135017, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38936185

RESUMEN

Biodegradation stands as an eco-friendly and effective approach for organic contaminant remediation. However, research on microorganisms degrading sodium benzoate contaminants in extreme environments remains limited. In this study, we report to display the isolation of a novel hot spring enriched cultures with sodium benzoate (400 mg/L) as the sole carbon source. The results revealed that the phylum Pseudomonadota was the potential sodium benzoate degrader and a novel genus within the family Geminicoccaceae of this phylum. The isolated strain was named Benzoatithermus flavus SYSU G07066T and was isolated from HNT-2 hot spring samples. Genomic analysis revealed that SYSU G07066T carried benABC genes and physiological experiments indicated the ability to utilize sodium benzoate as a sole carbon source for growth, which was further confirmed by transcriptomic data with expression of benABC. Phylogenetic analysis suggested that Horizontal Gene Transfer (HGT) plays a significant role in acquiring sodium benzoate degradation capability among prokaryotes, and SYSU G07066T might have acquired benABC genes through HGT from the family Acetobacteraceae. The discovery of the first microorganism with sodium benzoate degradation function from a hot spring enhances our understanding of the diverse functions within the family Geminicoccaceae. This study unearths the first novel genus capable of efficiently degrading sodium benzoate and its evolution history at high temperatures, holding promising industrial applications, and provides a new perspective for further exploring the application potential of hot spring "microbial dark matter".


Asunto(s)
Biodegradación Ambiental , Manantiales de Aguas Termales , Filogenia , Benzoato de Sodio , Benzoato de Sodio/metabolismo , Manantiales de Aguas Termales/microbiología , Contaminantes Químicos del Agua/metabolismo , Multiómica
20.
ACS Appl Mater Interfaces ; 16(26): 33439-33450, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38889105

RESUMEN

Photoactive colloidal motors whose motion can be controlled and even programed via external magnetic fields have significant potential in practical applications extending from biomedical fields to environmental remediation. Herein, we report a "three in one" strategy in a Co/Zn-TPM (3-trimethoxysilyl propyl methacrylate) bimetallic Janus colloidal micromotor (BMT-micromotor) which can be controlled by an optical field, chemical fuel, and magnetic field. The speed of the micromotors can be tuned by light intensity and with the concentration of the chemical fuel of H2O2, while it could be steered and programed through magnetic field due to the presence of Co in the bimetallic part. Finally, the BMT-micromotors were employed to effectively remove rubidium metal ions and organic dyes (methylene blue and rhodamine b). Benefited of excellent mobility, multiple active sites, and hierarchical morphology, the micromotors exhibit excellent adsorption capacity of 103 mg·g-1 to Rb metal ions and high photodegradation efficiency toward organic dyes in the presence of a lower concentration of H2O2. The experimental characterizations and DFT calculations confirmed the strong interaction of Rb metal ions on the surface of BMT-micromotors and the excellent decomposition of H2O2 which enhanced the photodegradation process. We expect the combination of light and fuel sensitivity with magnetic controllability to unlock an excess of opportunities for the application of BMT-micromotors in water treatments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...