Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
RSC Adv ; 14(33): 24031-24038, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39086517

RESUMEN

The development of inexpensive non-precious metal materials as high-efficiency stable oxygen reduction reaction (ORR) catalysts holds significant promise for application in metal-air batteries. Here, we synthesized a series of nanohybrids formed from MnO nanoparticles anchored on N-doped Ketjenblack carbon (MnO/NC) via a facile hydrothermal reaction and pyrolysis strategy. We systematically investigated the influence of pyrolysis temperature (600 to 900 °C) on the ORR activities of the MnO/NC samples. At the optimized pyrolysis temperature of 900 °C, the resulting MnO/NC (referred to as MnO/NC-900) exhibited superior ORR activity (onset potential = 0.85 V; half-wave potential = 0.74 V), surpassing other MnO/NC samples and nitrogen-doped Ketjenblack carbon (NC). Additionally, MnO/NC-900 demonstrated better stability than the Pt/C catalyst. The enhanced ORR activity of MnO/NC-900 was attributed to the synergy effect between MnO and NC, abundant surface carbon defects and surface-active components (N species and oxygen vacancies). Notably, the Zinc-air battery (ZAB) equipped MnO/NC-900 as the cathode catalyst delivered promising performance metrics, including a high peak power density of 146.5 mW cm-2, a large specific capacity of 795 mA h gZn -1, and an excellent cyclability up to 360 cycles. These results underscore the potential of this nanohybrid for applications in energy storage devices.

2.
Int J Nanomedicine ; 19: 8309-8336, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39161358

RESUMEN

Purpose: The treatment of craniofacial bone defects caused by trauma, tumors, and infectious and degenerative diseases is a significant issue in current clinical practice. Following the rapid development of bone tissue engineering (BTE) in the last decade, bioactive scaffolds coupled with multifunctional properties are in high demand with regard to effective therapy for bone defects. Herein, an innovative bone scaffold consisting of GO/Cu nanoderivatives and GelMA-based organic-inorganic hybrids was reported for repairing full-thickness calvarial bone defect. Methods: In this study, motivated by the versatile biological functions of nanomaterials and synthetic hydrogels, copper nanoparticle (CuNP)-decorated graphene oxide (GO) nanosheets (GO/Cu) were combined with methacrylated gelatin (GelMA)-based organic-inorganic hybrids to construct porous bone scaffolds that mimic the extracellular matrix (ECM) of bone tissues by photocrosslinking. The material characterizations, in vitro cytocompatibility, macrophage polarization and osteogenesis of the biohybrid hydrogel scaffolds were investigated, and two different animal models (BALB/c mice and SD rats) were established to further confirm the in vivo neovascularization, macrophage recruitment, biocompatibility, biosafety and bone regenerative potential. Results: We found that GO/Cu-functionalized GelMA/ß-TCP hydrogel scaffolds exhibited evidently promoted osteogenic activities, M2 type macrophage polarization, increased secretion of anti-inflammatory factors and excellent cytocompatibility, with favorable surface characteristics and sustainable release of Cu2+. Additionally, improved neovascularization, macrophage recruitment and tissue integration were found in mice implanted with the bioactive hydrogels. More importantly, the observations of microCT reconstruction and histological analysis in a calvarial bone defect model in rats treated with GO/Cu-incorporated hydrogel scaffolds demonstrated significantly increased bone morphometric values and newly formed bone tissues, indicating accelerated bone healing. Conclusion: Taken together, this BTE-based bone repair strategy provides a promising and feasible method for constructing multifunctional GO/Cu nanocomposite-incorporated biohybrid hydrogel scaffolds with facilitated osteogenesis, angiogenesis and immunoregulation in one system, with the optimization of material properties and biosafety, it thereby demonstrates great application potential for correcting craniofacial bone defects in future clinical scenarios.


Asunto(s)
Regeneración Ósea , Cobre , Grafito , Hidrogeles , Ratas Sprague-Dawley , Cráneo , Ingeniería de Tejidos , Andamios del Tejido , Animales , Regeneración Ósea/efectos de los fármacos , Andamios del Tejido/química , Cobre/química , Cobre/farmacología , Grafito/química , Hidrogeles/química , Hidrogeles/farmacología , Cráneo/efectos de los fármacos , Cráneo/lesiones , Ratas , Ratones , Ingeniería de Tejidos/métodos , Osteogénesis/efectos de los fármacos , Ratones Endogámicos BALB C , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Masculino , Nanopartículas del Metal/química , Nanoestructuras/química , Gelatina/química , Células RAW 264.7
3.
J Agric Food Chem ; 72(30): 16638-16650, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39012162

RESUMEN

Due to the immature intestinal digestion, immunity, and barrier functions, weaned infants are more susceptible to pathogens and develop diarrhea. Microplastics (MPs), pervasive contaminants in food, water, and air, have unknown effects on the intestinal development of weaned infants. This study explored the impact of polystyrene MPs on intestinal development using a weaned piglet model. Piglets in the control group received a basal diet, and those in the experimental groups received a basal diet contaminated with 150 mg/kg polystyrene MPs. The results showed that exposure to polystyrene MPs increased the diarrhea incidence and impaired the intestinal barrier function of weaned piglets. Notably, the exposure led to oxidative stress and inflammation in the intestine. Furthermore, polystyrene MPs-treated weaned piglets showed a reduced level of intestinal angiogenesis. Mechanistically, polystyrene MPs suppressed methyltransferase-like 3 (METTL3) expression by increasing reactive oxygen species (ROS) production, consequently destabilizing angiogenic factors' mRNA and hindering intestinal angiogenesis. In summary, polystyrene MPs contamination in the diet increases diarrhea and compromises intestinal angiogenesis through the ROS/METTL3 pathway, demonstrating their toxic effects on the intestine health of weaned infants.


Asunto(s)
Diarrea , Intestinos , Microplásticos , Poliestirenos , Especies Reactivas de Oxígeno , Animales , Microplásticos/toxicidad , Poliestirenos/toxicidad , Poliestirenos/efectos adversos , Porcinos , Especies Reactivas de Oxígeno/metabolismo , Intestinos/efectos de los fármacos , Intestinos/irrigación sanguínea , Diarrea/metabolismo , Diarrea/inducido químicamente , Diarrea/fisiopatología , Masculino , Mucosa Intestinal/metabolismo , Estrés Oxidativo , Humanos , Angiogénesis
4.
BMC Genomics ; 25(1): 551, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824564

RESUMEN

Because number of matured muscle fibers in poultry does not increase after birth, the meat yield is mainly determined during embryogenesis. We previously indicated breast muscle grew rapidly from 18th day after hatching (E18) to E27, and almost stopped from E27 to E34 of Jiaji ducks, while the mechanism is unclear. This study utilized RNA-seq to explore the related genes of muscle development and their relationship with small molecule metabolites at E18, E27 and E34 of Jiaji ducks. Several thousand differentially expressed genes (DEGs) were detected among E18, E27 and E34. DEGs expression profiles included 8 trend maps, among which trend 1 was opposite to and trend 6 was consistent with breast muscle development trend of Jiaji ducks. Through joint analysis between trend 1 of DEGs and trend 1 of differential metabolites (DEMs), protein digestion and absorption pathway stood out. The decrease of COL8A2 gene expression will lead to the decrease of arginine content, which will inhibit the development of breast muscle in embryonic Jiaji duck. Similarly, joint analysis between trend 6 of DEGs and trend 6 of DEMs indicated the increase of GAMT gene expression will cause the increase of proline content, and then promote the development of breast muscle of Jiaji duck in embryonic period. These results will be helpful for further understanding the mechanism of muscle yields of Jiaji ducks.


Asunto(s)
Patos , Metabolómica , Animales , Patos/metabolismo , Patos/genética , Patos/embriología , Metabolómica/métodos , Perfilación de la Expresión Génica , Transcriptoma , Músculo Esquelético/metabolismo , Regulación del Desarrollo de la Expresión Génica
5.
Food Res Int ; 190: 114581, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38945601

RESUMEN

Microplastics (MPs) pose a significant threat to livestock health. Yet, the roles of polystyrene MPs (PS-MPs) on meat quality and skeletal muscle development in pigs have not been fully determined. To investigate the effect of PS-MPs on skeletal muscle, piglets were given diets supplementation with 0 mg/kg (CON group), 75 mg/kg (75 mg/kg PS-MPs group), and 150 mg/kg PS-MPs (150 mg/kg PS-MPs group), respectively. The results indicated that the average daily gain (ADG) of piglets in the 150 mg/kg PS-MPs group was significantly lower than that in the CON group. No significant differences were observed in the final body weight and ADG between the CON group and the 75 mg/kg PS-MPs group. Piglets in the 150 mg/kg PS-MPs group exhibited decreased meat redness index and type I muscle fiber density. Metabolomic analysis revealed that the contents of meat flavor compounds carnosine, beta-alanine, palmitic acid, and niacinamide in muscle were lower in the 150 mg/kg PS-MPs group than in the CON group. Additionally, piglets subjected to 150 mg/kg PS-MPs exhibited impaired muscle angiogenesis. Further analysis indicated that PS-MPs exposure up-regulated thrombospondin 1 (THBS1) expression by inhibiting THBS1 mRNA and protein degradation, thereby disrupting skeletal muscle angiogenesis. These findings indicate that PS-MPs exposure adversely affects meat quality and hinders skeletal muscle angiogenesis in pigs, providing deeper insights into the detrimental effects of PS-MPs on meat quality and skeletal muscle development.


Asunto(s)
Microplásticos , Músculo Esquelético , Poliestirenos , Carne de Cerdo , Trombospondina 1 , Animales , Masculino , Angiogénesis , Alimentación Animal , Carnosina/farmacología , Contaminación de Alimentos/análisis , Calidad de los Alimentos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Neovascularización Fisiológica/efectos de los fármacos , Porcinos , Trombospondina 1/metabolismo , Carne de Cerdo/análisis
6.
Cells ; 13(11)2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38891046

RESUMEN

Fibroblasts, among the most prevalent and widely distributed cell types in the human body, play a crucial role in defining tissue structure. They do this by depositing and remodeling extracellular matrixes and organizing functional tissue networks, which are essential for tissue homeostasis and various human diseases. Pulmonary hypertension (PH) is a devastating syndrome with high mortality, characterized by remodeling of the pulmonary vasculature and significant cellular and structural changes within the intima, media, and adventitia layers. Most research on PH has focused on alterations in the intima (endothelial cells) and media (smooth muscle cells). However, research over the past decade has provided strong evidence of the critical role played by pulmonary artery adventitial fibroblasts in PH. These fibroblasts exhibit the earliest, most dramatic, and most sustained proliferative, apoptosis-resistant, and inflammatory responses to vascular stress. This review examines the aberrant phenotypes of PH fibroblasts and their role in the pathogenesis of PH, discusses potential molecular signaling pathways underlying these activated phenotypes, and highlights areas of research that merit further study to identify promising targets for the prevention and treatment of PH.


Asunto(s)
Fibroblastos , Hipertensión Pulmonar , Humanos , Hipertensión Pulmonar/patología , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/fisiopatología , Fibroblastos/metabolismo , Fibroblastos/patología , Animales , Transducción de Señal , Arteria Pulmonar/patología , Arteria Pulmonar/metabolismo
7.
Microbes Infect ; 26(5-6): 105352, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38729294

RESUMEN

The blockade of programmed death-ligand 1 (PD-L1) pathway has been clinically used in cancer immunotherapy, while its effects on infectious diseases remain elusive. Roles of PD-L1 signaling in the macrophage-mediated innate immune defense against M.tb is unclear. In this study, the outcomes of tuberculosis (TB) in wild-type (WT) mice treated with anti-PD-1/PD-L1 therapy and macrophage-specific Pdl1-knockout (Pdl1ΔΜΦ) mice were compared. Treatment with anti-PD-L1 or anti-PD-1 benefited protection against M.tb infection in WT mice, while Pdl1ΔΜΦ mice exhibited the increased susceptibility to M.tb infection. Mechanistically, the absence of PD-L1 signaling impaired M.tb killing by macrophages. Furthermore, elevated STAT3 activation was found in PD-L1-deficient macrophages, leading to increased interleukin (IL)-6 production and reduced inducible nitric oxide synthase (iNOS) expression. Inhibiting STAT3 phosphorylation partially impeded the increase in IL-6 production and restored iNOS expression in these PD-L1-deficient cells. These findings provide valuable insights into the complexity and mechanisms underlying anti-PD-L1 therapy in the context of tuberculosis.


Asunto(s)
Antígeno B7-H1 , Interleucina-6 , Macrófagos , Ratones Noqueados , Mycobacterium tuberculosis , Factor de Transcripción STAT3 , Transducción de Señal , Tuberculosis , Animales , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Antígeno B7-H1/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/microbiología , Ratones , Mycobacterium tuberculosis/inmunología , Interleucina-6/metabolismo , Factor de Transcripción STAT3/metabolismo , Tuberculosis/inmunología , Tuberculosis/microbiología , Tuberculosis/metabolismo , Ratones Endogámicos C57BL , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Regulación hacia Arriba , Inmunidad Innata , Femenino
8.
Animals (Basel) ; 14(5)2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38473074

RESUMEN

The blood vessels of the placenta are crucial for fetal growth. Here, lower vessel density and ornithine (Orn) content were observed in placentae for low-birth-weight fetuses versus normal-birth-weight fetuses at day 75 of gestation. Furthermore, the Orn content in placentae decreased from day 75 to 110 of gestation. To investigate the role of Orn in placental angiogenesis, 48 gilts (Bama pig) were allocated into four groups. The gilts in the control group were fed a basal diet (CON group), while those in the experimental groups were fed a basal diet supplemented with 0.05% Orn (0.05% Orn group), 0.10% Orn (0.10% Orn group), and 0.15% Orn (0.15% Orn group), respectively. The results showed that 0.15% Orn and 0.10% Orn groups exhibited increased birth weight of piglets compared with the CON group. Moreover, the 0.15% Orn group was higher than the CON group in the blood vessel densities of placenta. Mechanistically, Orn facilitated placental angiogenesis by regulating vascular endothelial growth factor-A (VEGF-A). Furthermore, maternal supplementation with 0.15% Orn during gestation increased the jejunal and ileal villi height and the concentrations of colonic propionate and butyrate in suckling piglets. Collectively, these results showed that maternal supplementation with Orn promotes placental angiogenesis and improves intestinal development of suckling piglets.

9.
Antioxidants (Basel) ; 13(3)2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38539817

RESUMEN

Intrauterine growth restriction (IUGR) pigs are characterized by long-term growth failure, metabolic disorders, and intestinal microbiota imbalance. The characteristics of the negative effects of IUGR at different growth stages of pigs are still unclear. Therefore, this study explored through multi-omics analyses whether the IUGR damages the intestinal barrier function and alters the colonization and metabolic profiles of the colonic microbiota in growing-finishing pigs. Seventy-two piglets (36 IUGR and 36 NBW) were allocated for this trial to analyze physiological and plasma biochemical parameters, as well as oxidative damage and inflammatory response in the colon. Moreover, the colonic microbiota communities and metabolome were examined using 16s rRNA sequencing and metabolomics technologies to reveal the intestinal characteristics of IUGR pigs at different growth stages (25, 50, and 100 kg). IUGR altered the concentrations of plasma glucose, total protein, triglycerides, and cholesterol. Colonic tight junction proteins were markedly inhibited by IUGR. IUGR decreased plasma T-AOC, SOD, and GSH levels and colonic SOD-1, SOD-2, and GPX-4 expressions by restraining the Nrf2/Keap1 signaling pathway. Moreover, IUGR increased colonic IL-1ß and TNF-α levels while reducing IL-10, possibly through activating the TLR4-NF-κB/ERK pathway. Notably, IUGR pigs had lower colonic Streptococcus abundance and Firmicutes-to-Bacteroidetes ratio at the 25 kg BW stage while having higher Firmicutes abundance at the 100 kg BW stage; moreover, IUGR pigs had lower SCFA concentrations. Metabolomics analysis showed that IUGR increased colonic lipids and lipid-like molecules, organic acids and derivatives, and organoheterocyclic compounds concentrations and enriched three differential metabolic pathways, including linoleic acid, sphingolipid, and purine metabolisms throughout the trial. Collectively, IUGR altered the nutrient metabolism, redox status, and colonic microbiota community and metabolite profiles of pigs and continued to disrupt colonic barrier function by reducing antioxidant capacity via the Nrf2/Keap1 pathway and activating inflammation via the TLR4-NF-κB/ERK pathway during the growing-finishing stage. Moreover, colonic Firmicutes and Streptococcus could be potential regulatory targets for modulating the metabolism and health of IUGR pigs.

10.
EMBO Rep ; 25(2): 616-645, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38243138

RESUMEN

Vascular remodeling is the process of structural alteration and cell rearrangement of blood vessels in response to injury and is the cause of many of the world's most afflicted cardiovascular conditions, including pulmonary arterial hypertension (PAH). Many studies have focused on the effects of vascular endothelial cells and smooth muscle cells (SMCs) during vascular remodeling, but pericytes, an indispensable cell population residing largely in capillaries, are ignored in this maladaptive process. Here, we report that hypoxia-inducible factor 2α (HIF2α) expression is increased in the lung tissues of PAH patients, and HIF2α overexpressed pericytes result in greater contractility and an impaired endothelial-pericyte interaction. Using single-cell RNAseq and hypoxia-induced pulmonary hypertension (PH) models, we show that HIF2α is a major molecular regulator for the transformation of pericytes into SMC-like cells. Pericyte-selective HIF2α overexpression in mice exacerbates PH and right ventricular hypertrophy. Temporal cellular lineage tracing shows that HIF2α overexpressing reporter NG2+ cells (pericyte-selective) relocate from capillaries to arterioles and co-express SMA. This novel insight into the crucial role of NG2+ pericytes in pulmonary vascular remodeling via HIF2α signaling suggests a potential drug target for PH.


Asunto(s)
Hipertensión Pulmonar , Remodelación Vascular , Ratones , Humanos , Animales , Pericitos/metabolismo , Células Endoteliales/metabolismo , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/metabolismo , Hipoxia/genética , Hipoxia/metabolismo , Pulmón
11.
J Diabetes Investig ; 15(2): 145-158, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37961023

RESUMEN

INTRODUCTION: Diabetic wounds are difficult to heal, but the pathogenesis is unknown. MicroRNAs (miRNAs) are thought to play important roles in wound healing. The effect of miR-488-3p in wound healing was studied in this article. MATERIALS AND METHODS: The gene methylation was measured by methylation specific PCR (MSP) assay. A dual-luciferase reporter assay was adopted to analyze the interaction between miR-488-3p and MeCP2. RESULTS: Cytochrome P450 1B1 (CYP1B1) is a monooxygenase belonging to the cytochrome P450 family that aids in wound healing. Our findings showed that the miR-488-3p and CYP1B1 expression levels were much lower in wound tissues of diabetics with skin defects, but the methyl-CpG-binding protein 2 (MeCP2) level was significantly higher than that in control skin tissues. MiR-488-3p overexpression increased cell proliferation and migration, as well as HUVEC angiogenesis, while inhibiting apoptosis, according to function experiments. In vitro, MeCP2 inhibited wound healing by acting as a target of miR-488-3p. We later discovered that MeCP2 inhibited CYP1B1 expression by enhancing its methylation state. In addition, CYP1B1 knockdown inhibited wound healing. Furthermore, MeCP2 overexpression abolished the promoting effect of miR-488-3p on wound healing. It also turned out that CYP1B1 promoted wound healing by activating the Wnt4/ß-catenin pathway. Animal experiments also showed that miR-488-3p overexpression could accelerate wound healing in diabetic male SD rats. CONCLUSIONS: MiR-488-3p is a potential therapeutic target for diabetic wound healing since it improved wound healing by activating the CYP1B1-mediated Wnt4/-catenin signaling cascade via MeCP2.


Asunto(s)
Diabetes Mellitus , MicroARNs , Animales , Masculino , Ratas , Línea Celular Tumoral , Proliferación Celular/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Proteína 2 de Unión a Metil-CpG/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Ratas Sprague-Dawley , Vía de Señalización Wnt/genética , Cicatrización de Heridas
12.
Free Radic Biol Med ; 212: 433-447, 2024 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-38159892

RESUMEN

Blood vessels play a crucial role in the development of skeletal muscle, ensuring the supply of nutrients and oxygen. Putrescine, an essential polyamine for eukaryotic cells, has an unclear impact on skeletal muscle angiogenesis. In this study, we observed lower vessel density and reduced putrescine level in the muscle of low-birth-weight piglet models, and identified a positive correlation between putrescine content and muscle vessel density. Furthermore, putrescine was found to promote angiogenesis in skeletal muscle both in vitro and in vivo by targeting matrix metalloproteinase 9 (MMP9). On a mechanistic level, putrescine augmented the expression of methyltransferase like 3 (METTL3) by attenuating hydrogen peroxide production, thereby increasing the level of N6-methyladenosine (m6A)-modified MMP9 mRNA. This m6A-modified MMP9 mRNA was subsequently recognized and bound by the YTH N6-methyladenosine RNA binding protein 1 (YTHDF1), enhancing the stability of MMP9 mRNA and its protein expression, consequently accelerating angiogenesis in skeletal muscle. In summary, our findings suggest that putrescine enhances MMP9-mediated angiogenesis in skeletal muscle via the hydrogen peroxide/METTL3 pathway.


Asunto(s)
Metiltransferasas , Putrescina , Animales , Porcinos , Metiltransferasas/genética , Metiltransferasas/metabolismo , Putrescina/farmacología , Peróxido de Hidrógeno , Metaloproteinasa 9 de la Matriz/genética , Angiogénesis , Músculo Esquelético/metabolismo , ARN Mensajero/genética
13.
Front Oncol ; 13: 1322403, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38107067

RESUMEN

Acute myeloid leukemia (AML) is a malignant disease of myeloid hematopoietic stem/progenitor cells characterized by the abnormal proliferation of primitive and naive random cells in the bone marrow and peripheral blood. Acute promyelocytic leukemia (APL) is a type (AML-M3) of AML. Most patients with APL have the characteristic chromosomal translocation t(15; 17)(q22; q12), forming PML::RARA fusion. The occurrence and progression of AML are often accompanied by the emergence of gene fusions such as PML::RARA, CBFß::MYH11, and RUNX1::RUNX1T1, among others. Gene fusions are the main molecular biological abnormalities in acute leukemia, and all fusion genes act as crucial oncogenic factors in leukemia. Herein, we report the first case of LYN::LINC01900 fusion transcript in AML with a promyelocytic phenotype and TP53 mutation. Further studies should address whether new protein products may result from this fusion, as well as the biological function of these new products in disease occurrence and progression.

14.
Int. j. morphol ; 41(6): 1906-1908, dic. 2023. ilus
Artículo en Inglés | LILACS | ID: biblio-1528772

RESUMEN

SUMMARY: The stomach receives a rich blood supply from five sets of arteries, all of which originate from the celiac trunk. During the dissection of a female cadaver that had been fixed with formalin, an atypical branching pattern was observed. An accessory left gastric artery was found to originate from the left hepatic artery and send small branches to the esophagus, cardia, and fundus of the stomach. However, there was no anastomosis between the lower accessory left gastric artery and the left gastric artery. This is a rare variant of the gastric artery that has not been previously described in detail. It is important to recognize this variation for safe and effective interventional diagnosis and treatment techniques if dealing with the liver or gastric arteries.


El estómago recibe un rico suministro de sangre de cinco conjuntos de arterias, todas las cuales se originan en el tronco celíaco. Durante la disección de un cadáver femenino que había sido fijado con formalina, se observó un patrón de ramificación atípico. Se encontró una arteria gástrica izquierda accesoria que se originaba en la arteria hepática izquierda y enviaba pequeñas ramas al esófago, el cardias y el fondo del estómago. Sin embargo, no hubo anastomosis entre la arteria gástrica izquierda accesoria inferior y la arteria gástrica izquierda. Se trata de una variante rara de la arteria gástrica que no se ha descrito previamente en detalles. Es importante reconocer esta variación para la aplicación de técnicas de diagnóstico y tratamiento intervencionistas seguras y efectivas a nivel del hígado o las arterias gástricas.


Asunto(s)
Humanos , Femenino , Anciano , Variación Anatómica , Artería Gástrica/anatomía & histología , Cadáver
16.
Antioxidants (Basel) ; 12(10)2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37891879

RESUMEN

Intestinal vessels play a critical role in nutrient absorption, whereas the effect and mechanism of low birth weight (LBW) on its formation remain unclear. Here, twenty newborn piglets were assigned to the control (CON) group (1162 ± 98 g) and LBW group (724 ± 31 g) according to their birth weight. Results showed that the villus height and the activity of maltase in the jejunum were lower in the LBW group than in the CON group. LBW group exhibited a higher oxidative stress level and impaired mitochondrial function in the jejunum and was lower than the CON group in the intestinal vascular density. To investigate the role of oxidative stress in intestinal angiogenesis, H2O2 was employed to induce oxidative stress in porcine intestinal epithelial cells (IPEC-J2). The results showed that the conditioned media from IPEC-J2 with H2O2 treatment decreased the angiogenesis of porcine vascular endothelial cells (PVEC). Transcriptome analysis revealed that a higher expression level of dual oxidase 2 (DUOX2) was found in the intestine of LBW piglets. Knockdown of DUOX2 in IPEC-J2 increased the proliferation and decreased the oxidative stress level. In addition, conditioned media from IPEC-J2 with DUOX2-knockdown was demonstrated to promote the angiogenesis of PVEC. Mechanistically, the knockdown of DUOX2 decreased the reactive oxygen species (ROS) level, thus increasing the angiogenesis in a matrix metalloproteinase 3 (MMP3) dependent manner. Conclusively, our results indicated that DUOX2-induced oxidative stress inhibited intestinal angiogenesis through MMP3 in a LBW piglet model.

17.
Front Immunol ; 14: 1223122, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37497214

RESUMEN

Introduction: In pulmonary hypertension (PH), pulmonary arterial remodeling is often accompanied by perivascular inflammation. The inflammation is characterized by the accumulation of activated macrophages and lymphocytes within the adventitial stroma, which is comprised primarily of fibroblasts. The well-known ability of fibroblasts to secrete interleukins and chemokines has previously been implicated as contributing to this tissue-specific inflammation in PH vessels. We were interested if pulmonary fibroblasts from PH arteries contribute to microenvironmental changes that could activate and polarize T-cells in PH. Methods: We used single-cell RNA sequencing of intact bovine distal pulmonary arteries (dPAs) from PH and control animals and flow cytometry, mRNA expression analysis, and respirometry analysis of blood-derived bovine/human T-cells exposed to conditioned media obtained from pulmonary fibroblasts of PH/control animals and IPAH/control patients (CM-(h)PH Fibs vs CM-(h)CO Fibs). Results: Single-cell RNA sequencing of intact bovine dPAs from PH and control animals revealed a pro-inflammatory phenotype of CD4+ T-cells and simultaneous absence of regulatory T-cells (FoxP3+ Tregs). By exposing T-cells to CM-(h)PH Fibs we stimulated their proinflammatory differentiation documented by increased IFNγ and decreased IL4, IL10, and TGFß mRNA and protein expression. Interestingly, we demonstrated a reduction in the number of suppressive T-cell subsets, i.e., human/bovine Tregs and bovine γδ T-cells treated with CM-(h)PH-Fibs. We also noted inhibition of anti-inflammatory cytokine expression (IL10, TGFß, IL4). Pro-inflammatory polarization of bovine T-cells exposed to CM-PH Fibs correlated with metabolic shift to glycolysis and lactate production with increased prooxidant intracellular status as well as increased proliferation of T-cells. To determine whether metabolic reprogramming of PH-Fibs was directly contributing to the effects of PH-Fibs conditioned media on T-cell polarization, we treated PH-Fibs with the HDAC inhibitor SAHA, which was previously shown to normalize metabolic status and examined the effects of the conditioned media. We observed significant suppression of inflammatory polarization associated with decreased T-cell proliferation and recovery of mitochondrial energy metabolism. Conclusion: This study demonstrates how the pulmonary fibroblast-derived microenvironment can activate and differentiate T-cells to trigger local inflammation, which is part of the vascular wall remodeling process in PH.


Asunto(s)
Hipertensión Pulmonar , Humanos , Animales , Bovinos , Hipertensión Pulmonar/metabolismo , Medios de Cultivo Condicionados/metabolismo , Interleucina-10 , Interleucina-4 , Inflamación/metabolismo , Subgrupos de Linfocitos T/metabolismo , Factor de Crecimiento Transformador beta
18.
Am J Respir Cell Mol Biol ; 69(5): 570-583, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37343939

RESUMEN

Pulmonary hypertension (PH) is a heterogeneous and life-threatening cardiopulmonary disorder in which mitochondrial dysfunction is believed to drive pathogenesis, although the underlying mechanisms remain unclear. To determine if abnormal SIRT3 (sirtuin 3) activity is related to mitochondrial dysfunction in adventitial fibroblasts from patients with idiopathic pulmonary arterial hypertension (IPAH) and hypoxic PH calves (PH-Fibs) and whether SIRT3 could be a potential therapeutic target to improve mitochondrial function, SIRT3 concentrations in control fibroblasts, PH-Fibs, and lung tissues were determined using quantitative real-time PCR and western blot. SIRT3 deacetylase activity in cells and lung tissues was determined using western blot, immunohistochemistry staining, and immunoprecipitation. Glycolysis and mitochondrial function in fibroblasts were measured using respiratory analysis and fluorescence-lifetime imaging microscopy. The effects of restoring SIRT3 activity (by overexpression of SIRT3 with plasmid, activation SIRT3 with honokiol, and supplementation with the SIRT3 cofactor nicotinamide adenine dinucleotide [NAD+]) on mitochondrial protein acetylation, mitochondrial function, cell proliferation, and gene expression in PH-Fibs were also investigated. We found that SIRT3 concentrations were decreased in PH-Fibs and PH lung tissues, and its cofactor, NAD+, was also decreased in PH-Fibs. Increased acetylation in overall mitochondrial proteins and SIRT3-specific targets (MPC1 [mitochondrial pyruvate carrier 1] and MnSOD2 [mitochondrial superoxide dismutase]), as well as decreased MnSOD2 activity, was identified in PH-Fibs and PH lung tissues. Normalization of SIRT3 activity, by increasing its expression with plasmid or with honokiol and supplementation with its cofactor NAD+, reduced mitochondrial protein acetylation, improved mitochondrial function, inhibited proliferation, and induced apoptosis in PH-Fibs. Thus, our study demonstrated that restoration of SIRT3 activity in PH-Fibs can reduce mitochondrial protein acetylation and restore mitochondrial function and PH-Fib phenotype in PH.


Asunto(s)
Hipertensión Pulmonar , Sirtuina 3 , Humanos , Animales , Bovinos , Hipertensión Pulmonar/patología , Sirtuina 3/genética , Sirtuina 3/metabolismo , NAD/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Fibroblastos/metabolismo
19.
Animals (Basel) ; 13(9)2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37174573

RESUMEN

The aims of this study were to test the effects of dietary probiotics and acidifiers on the production performance, colostrum components, serum antioxidant activity and hormone levels, and gene expression in the mammary tissue of lactating sows. Four treatments were administered with six replicates to 24 lactating sows. The control group (GC) received a basal diet, while the experimental groups received a basal diet with 200 mL/d probiotics (GP), 0.5% acidifiers (GA), and 200 mL/d probiotics + 0.5% acidifiers (GM), respectively. Compared with the GC, (1) the average weight of the piglets on the 21st day of lactation in the GM was higher (p < 0.05); (2) the colostrum fat ratio increased significantly (p < 0.05); (3) the malondialdehyde levels in GP and GM were lower (p < 0.05) on the 11th day; (4) on the 1st, 11th, and 21st days, the prolactin in GP and GM increased (p < 0.05); (5) on the 21st day, the relative expression levels of the prolactin receptor and fatty acid synthase were increased (p < 0.05). In summary, the basal diet mixed with 200 mL/d probiotics + 0.5% acidifiers could improve the production performance, colostrum components, serum antioxidant activity, and hormone levels of lactating sows.

20.
Animals (Basel) ; 13(9)2023 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-37174601

RESUMEN

This study was to investigate the effects of dietary supplementation with putrescine on the growth performance and meat quality of chickens. A total of 480 eighty-day-old female Wenchang chickens were randomly assigned into four groups, with 8 replications per group and 15 animals per replicate. The chickens in the control group (Con) were fed a basal diet; the 3 experimental groups were fed a basal diet with 0.01%, 0.03%, and 0.05% putrescine, respectively. The experiment lasted for 40 days. The results showed that dietary supplementation with 0.05% putrescine increased (p < 0.05) the final body weight and average daily weight gain, and decreased the ratio of feed intake to the body weight gain of Wenchang chickens. Dietary supplementation with putrescine decreased the concentrations of putrescine, spermidine, and spermine in serum (p < 0.05). The contents of methionine, phenylalanine, lysine, aspartic acid, tyrosine, total essential amino acids, and total amino acids in breast muscle were higher (p < 0.05) in 0.03% and 0.05% groups than those in Con group. However, the contents of undecanoic acid, lauric acid, tridecanoic acid, myristic acid, pentadecanoic acid, arachidic acid, docosanoic acid, tricosanic acid, lignoceric acid, erucic acid, cis-11,14,17-eicosatrienoate, linoleic acid, and total n-6 monounsaturated fatty acids in breast muscle were lower (p < 0.05) in 0.03% and 0.05% groups than those in Con group. In addition, putrescine supplementation decreased (p < 0.05) the ratio of n-6/n-3 polyunsaturated fatty acids in breast meat. Overall, dietary supplementation with 0.05% putrescine enhanced the growth performance and meat quality of Wenchang chickens.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...