Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 658
Filtrar
1.
Cell Death Discov ; 10(1): 323, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39009585

RESUMEN

Adipose tissue, aside from adipocytes, comprises various abundant immune cells. The accumulation of low-grade chronic inflammation in adipose tissue serves as a primary cause and hallmark of insulin resistance. In this study, we investigate the physiological roles of FADD in adipose tissue inflammation, adipogenesis, and adipocyte survival. High levels of Fadd mRNA were observed in mitochondrial-rich organs, particularly brown adipose tissue. To explore its metabolic functions, we generated global Fadd knockout mice, resulting in embryonic lethality, while heterozygous knockout (Fadd+/-) mice did not show any significant changes in body weight or composition. However, Fadd+/- mice exhibited reduced respiratory exchange ratio (RER) and serum cholesterol levels, along with heightened global and adipose inflammatory responses. Furthermore, AT masses and expression levels of adipogenic and lipogenic genes were decreased in Fadd+/- mice. In cellular studies, Fadd inhibition disrupted adipogenic differentiation and suppressed the expression of adipogenic and lipogenic genes in cultured adipocytes. Additionally, Fadd overexpression caused adipocyte death in vitro with decreased RIPK1 and RIPK3 expression, while Fadd inhibition downregulated RIPK3 in iWAT in vivo. These findings collectively underscore the indispensable role of FADD in adipose inflammation, adipogenesis, and adipocyte survival.

2.
Research (Wash D C) ; 7: 0411, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38974011

RESUMEN

Molecular materials possessing switchable magneto-optical properties are of great interest due to their potential applications in spintronics and molecular devices. However, switching their photoluminescence (PL) and single-molecule magnet (SMM) behavior via light-induced structural changes still constitutes a formidable challenge. Here, a series of cubane structures were synthesized via self-assembly of 9-anthracene carboxylic acid (HAC) and rare-earth ions. All complexes exhibited obvious photochromic phenomena and complete PL quenching upon Xe lamp irradiation, which were realized via the synergistic effect of photogenerated radicals and [4 + 4] photocycloaddition of the AC components. The quenched PL showed the largest fluorescence intensity change (99.72%) in electron-transfer photochromic materials. A reversible decoloration process was realized via mechanical grinding, which is unexpectedly in the electron-transfer photochromic materials. Importantly, an SMM behavior of the Dy analog was observed after room-temperature irradiation due to the photocycloaddition of AC ligands and the photogenerated stable radicals changed the electrostatic ligand field and magnetic coupling. Moreover, based on the remarkably photochromic and photoluminescent properties of these compounds, 2 demos were applied to support their application in information anti-counterfeiting and inkless printing. This work, for the first time utilizing the simultaneous modulation of photocycloaddition and photogenerated radicals in one system, realizes complete PL quenching and light-induced SMM behavior, providing a dynamical switch for the construction of multifunctional polymorphic materials with optical response and optical storage devices.

3.
Asian J Surg ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38942632
4.
Asian J Surg ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38937236
5.
J Org Chem ; 89(13): 9597-9608, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38885461

RESUMEN

An ambient-light-promoted stereospecific olefinic C(sp2)-S bond construction of thioacids and 1,1-diarylethenes has been demonstrated, affording various (Z)-vinyl thioesters in 51-85% yields under solvent- and catalyst-free conditions. Mechanistic studies indicated that the formation of thioacid-olefin complexes is responsible for generating a carbonyl thiyl radical and dioxygen in the air participates in the reaction and functions as a traceless reagent. Moreover, synthetic applications have been demonstrated by the gram scale synthesis and aggregation-induced emission property of representative compound 3i.

6.
Endocrine ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38861116

RESUMEN

AIM: To analysis the change of electrogastrogram (EGG) in patients with type 2 diabetes mellitus (T2DM), and evaluate the prevalence of abnormal gastric electrical rhythm (AGER) and its relative influencing factors. METHODS: A total of 65 patients with T2DM hospitalized at the Second Affiliated Hospital of Soochow University from Dec. 2020 to Dec. 2021 were included in the cross-sectional study. General information, clinical data, and medical history data of all study subjects, including name, gender, body mass index (BMI), duration of diabetes, anti-diabetic therapies, high blood pressure (HBP) history, smoking history, and medication history, were completely collected. The results of laboratory tests, including biochemical parameters, glycosylated hemoglobin (HbA1c), fasting C-peptide, 2 h postprandial C-peptide, 24 h urine total protein (24 hUTP), urine microalbumin creatinine ratio (UACR) and estimated glomerular filtration rate (eGFR) were recorded. EGG, Gastroparesis Cardinal Symptom Index (GCSI), gastric emptying ultrasound, fundus examination, carotid artery ultrasonography, cardiac autonomic function test, heart rate variability (HRV) were all examined and recorded as well. According to the results of EGG, the subjects were divided into normal gastric electrical rhythm (NGER) group and abnormal gastric electrical rhythm (AGER) group. RESULTS: (1) Fasting blood glucose (FBG), HbA1c, the presence of diabetic peripheral neuropathy (DPN) and diabetic cardiac autonomic neuropathy (DCAN) were significantly higher in the AGER group (p < 0.05). Low frequency (LF) and high frequency (HF), the indicators of HRV, were significantly lower in the AGER group (p < 0.05). In addition, the prevalence of feeling excessively full after meals, loss of appetite, and stomach or belly visibly larger after meals of gastrointestinal symptoms of gastroparesis were significantly higher in the AGER group (p < 0.05). Multiple logistic regression analysis showed that FBG and the prevalence of DCAN were the independent risk factors. CONCLUSION: AGER was associated with high FBG and the presence of DCAN. EGG examination is recommended for patients with gastrointestinal symptoms and clues of DCAN.

7.
Huan Jing Ke Xue ; 45(6): 3284-3296, 2024 Jun 08.
Artículo en Chino | MEDLINE | ID: mdl-38897751

RESUMEN

Land-use changes are an important factor affecting the change in carbon storage in terrestrial ecosystems. Exploring the relationship between land-use changes and carbon storage provides reliable data support for optimizing regional land-use structure and maintaining regional carbon balance. Taking Jiangxi Province as an example, we first analyzed the land-use changes; then simulated the land-use pattern under three scenarios (i.e., natural development, ecological priority, and economic development scenarios) in 2030 based on the PLUS model; and finally estimated the carbon storage change in the past (i.e., 1990-2020) and future periods (i.e., three scenarios in 2030) using the InVEST model, analyzed the spatial-temporal characteristics, and proposed the corresponding suggestions. The results showed:① The carbon storage in Jiangxi Province showed a downward trend from 1990 to 2020, with a total reduction of 4.58×107 t. The increase in the water bodies and construction land and the decrease in cultivated land, woodland, grassland, and unused land was the major cause. ② The carbon storage under natural development, ecological priority, and economic development scenarios in Jiangxi Province in 2030 were 2.20×109, 2.24×109 and 2.19×109 t, respectively. ③ The carbon storage under the three scenarios showed similar spatial characteristics, wherein the high carbon storage was distributed in northern, northwest, and western regions, and the low carbon storage was distributed near the central region. These results can provide data support for future land spatial planning and improving the carbon storage of terrestrial ecosystems in Jiangxi Province.

9.
Ren Fail ; 46(1): 2350235, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38721924

RESUMEN

Increasing evidence suggests that peritoneal fibrosis induced by peritoneal dialysis (PD) is linked to oxidative stress. However, there are currently no effective interventions for peritoneal fibrosis. In the present study, we explored whether adding caffeic acid phenethyl ester (CAPE) to peritoneal dialysis fluid (PDF) improved peritoneal fibrosis caused by PD and explored the molecular mechanism. We established a peritoneal fibrosis model in Sprague-Dawley rats through intraperitoneal injection of PDF and lipopolysaccharide (LPS). Rats in the PD group showed increased peritoneal thickness, submesothelial collagen deposition, and the expression of TGFß1 and α-SMA. Adding CAPE to PDF significantly inhibited PD-induced submesothelial thickening, reduced TGFß1 and α-SMA expression, alleviated peritoneal fibrosis, and improved the peritoneal ultrafiltration function. In vitro, peritoneal mesothelial cells (PMCs) treated with PDF showed inhibition of the AMPK/SIRT1 pathway, mitochondrial membrane potential depolarization, overproduction of mitochondrial reactive oxygen species (ROS), decreased ATP synthesis, and induction of mesothelial-mesenchymal transition (MMT). CAPE activated the AMPK/SIRT1 pathway, thereby inhibiting mitochondrial membrane potential depolarization, reducing mitochondrial ROS generation, and maintaining ATP synthesis. However, the beneficial effects of CAPE were counteracted by an AMPK inhibitor and siSIRT1. Our results suggest that CAPE maintains mitochondrial homeostasis by upregulating the AMPK/SIRT1 pathway, which alleviates oxidative stress and MMT, thereby mitigating the damage to the peritoneal structure and function caused by PD. These findings suggest that adding CAPE to PDF may prevent and treat peritoneal fibrosis.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Ácidos Cafeicos , Diálisis Peritoneal , Fibrosis Peritoneal , Alcohol Feniletílico , Sirtuina 1 , Animales , Ratas , Proteínas Quinasas Activadas por AMP/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/metabolismo , Ácidos Cafeicos/farmacología , Ácidos Cafeicos/uso terapéutico , Soluciones para Diálisis , Modelos Animales de Enfermedad , Homeostasis/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Estrés Oxidativo/efectos de los fármacos , Diálisis Peritoneal/efectos adversos , Fibrosis Peritoneal/etiología , Fibrosis Peritoneal/metabolismo , Fibrosis Peritoneal/prevención & control , Peritoneo/patología , Peritoneo/efectos de los fármacos , Peritoneo/metabolismo , Alcohol Feniletílico/análogos & derivados , Alcohol Feniletílico/farmacología , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Sirtuina 1/efectos de los fármacos , Sirtuina 1/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo
10.
J Affect Disord ; 359: 333-341, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38801920

RESUMEN

BACKGROUND: Neuroimmune plays an important role in major depressive disorders (MDD). N-linked protein glycosylation (NLG) might contribute to depression by regulating the neuroinflammatory response. As microglia is the main executor of neuroimmune function in the central neural system (CNS), targeting the process of N-linked protein glycosylation of microglia in the mice used for studying depression might potentially offer new avenues for the strategy for MDD. METHODS: The chronic unpredictable mild stress (CUMS) mouse model was established for the whole brain microglia isolating. Then, RNA samples of microglia were extracted for transcriptome sequencing and mRNA analysis. Immunofluorescence (IF) was used to identify the expression level of NLG-related enzyme, B4galt1, in microglia. RESULTS: The data showed that NLG was positively related to depression. Moreover, the NLG-related gene, B4galt1 increased expression in the microglia of CUMS mice. Then, the inhibition of NLG reversed the depressive behavior in CUMS mice. The expression level of B4galt1 in CUMS mice was upregulating following the NLG-inhibitor treatment. Similar results haven't been observed in neurons. Information obtained from these experiments showed increasing expression of B4galt1 in microglia following depressive-like behaviors. CONCLUSIONS: These findings indicate that NLG in microglia is associated with MDD, and suggest that therapeutically targeting NLG might be an effective strategy for depression. LIMITATIONS: How to modulate the B4galt1 or NLG pathways in microglia efficiently and economically request new technologies.


Asunto(s)
Trastorno Depresivo Mayor , Modelos Animales de Enfermedad , Microglía , Animales , Ratones , Microglía/metabolismo , Glicosilación , Trastorno Depresivo Mayor/metabolismo , Masculino , Estrés Psicológico/metabolismo , Estrés Psicológico/inmunología , Depresión/metabolismo , Galactosiltransferasas/genética , Galactosiltransferasas/metabolismo , Ratones Endogámicos C57BL , Encéfalo/metabolismo
11.
World J Gastrointest Oncol ; 16(5): 2038-2059, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38764836

RESUMEN

BACKGROUND: Heterogeneous ribonucleoprotein A1 (hnRNPA1) has been reported to enhance the Warburg effect and promote colon cancer (CC) cell proliferation, but the role and mechanism of the miR-490-3p/hnRNPA1-b/PKM2 axis in CC have not yet been elucidated. AIM: To investigate the role and mechanism of a novel miR-490-3p/hnRNPA1-b/PKM2 axis in enhancing the Warburg effect and promoting CC cell proliferation through the PI3K/AKT pathway. METHODS: Paraffin-embedded pathological sections from 220 CC patients were collected and subjected to immunohistochemical analysis to determine the expression of hnRNPA1-b. The relationship between the expression values and the clinicopathological features of the patients was investigated. Differences in mRNA expression were analyzed using quantitative real-time polymerase chain reaction, while differences in protein expression were analyzed using western blot. Cell proliferation was evaluated using the cell counting kit-8 and 5-ethynyl-2'-deoxyuridine assays, and cell cycle and apoptosis were detected using flow cytometric assays. The targeted binding of miR-490-3p to hnRNPA1-b was validated using a dual luciferase reporter assay. The Warburg effect was evaluated by glucose uptake and lactic acid production assays. RESULTS: The expression of hnRNPA1-b was significantly increased in CC tissues and cells compared to normal controls (P < 0.05). Immunohistochemical results demonstrated significant variations in the expression of the hnRNPA1-b antigen in different stages of CC, including stage I, II-III, and IV. Furthermore, the clinicopathologic characterization revealed a significant correlation between hnRNPA1-b expression and clinical stage as well as T classification. HnRNPA1-b was found to enhance the Warburg effect through the PI3K/AKT pathway, thereby promoting proliferation of HCT116 and SW620 cells. However, the proliferation of HCT116 and SW620 cells was inhibited when miR-490-3p targeted and bound to hnRNPA1-b, effectively blocking the Warburg effect. CONCLUSION: These findings suggest that the novel miR-490-3p/hnRNPA1-b/PKM2 axis could provide a new strategy for the diagnosis and treatment of CC.

12.
Nat Commun ; 15(1): 3221, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622129

RESUMEN

The hippocampus creates a cognitive map of the external environment by encoding spatial and self-motion-related information. However, it is unclear whether hippocampal neurons could also incorporate internal cognitive states reflecting an animal's exploratory intention, which is not driven by rewards or unexpected sensory stimuli. In this study, a subgroup of CA1 neurons was found to encode both spatial information and animals' investigatory intentions in male mice. These neurons became active before the initiation of exploration behaviors at specific locations and were nearly silent when the same fields were traversed without exploration. Interestingly, this neuronal activity could not be explained by object features, rewards, or mismatches in environmental cues. Inhibition of the lateral entorhinal cortex decreased the activity of these cells during exploration. Our findings demonstrate that hippocampal neurons may bridge external and internal signals, indicating a potential connection between spatial representation and intentional states in the construction of internal navigation systems.


Asunto(s)
Intención , Navegación Espacial , Masculino , Ratones , Animales , Percepción Espacial/fisiología , Hipocampo/fisiología , Corteza Entorrinal , Señales (Psicología) , Navegación Espacial/fisiología
13.
Mol Cell Proteomics ; 23(6): 100777, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38670310

RESUMEN

Transmembrane (TM) proteins constitute over 30% of the mammalian proteome and play essential roles in mediating cell-cell communication, synaptic transmission, and plasticity in the central nervous system. Many of these proteins, especially the G protein-coupled receptors (GPCRs), are validated or candidate drug targets for therapeutic development for mental diseases, yet their expression profiles are underrepresented in most global proteomic studies. Herein, we establish a brain TM protein-enriched spectral library based on 136 data-dependent acquisition runs acquired from various brain regions of both naïve mice and mental disease models. This spectral library comprises 3043 TM proteins including 171 GPCRs, 231 ion channels, and 598 transporters. Leveraging this library, we analyzed the data-independent acquisition data from different brain regions of two mouse models exhibiting depression- or anxiety-like behaviors. By integrating multiple informatics workflows and library sources, our study significantly expanded the mental stress-perturbed TM proteome landscape, from which a new GPCR regulator of depression was verified by in vivo pharmacological testing. In summary, we provide a high-quality mouse brain TM protein spectral library to largely increase the TM proteome coverage in specific brain regions, which would catalyze the discovery of new potential drug targets for the treatment of mental disorders.


Asunto(s)
Encéfalo , Modelos Animales de Enfermedad , Trastornos Mentales , Ratones Endogámicos C57BL , Proteoma , Proteómica , Animales , Proteoma/metabolismo , Encéfalo/metabolismo , Proteómica/métodos , Ratones , Trastornos Mentales/metabolismo , Proteínas de la Membrana/metabolismo , Masculino , Receptores Acoplados a Proteínas G/metabolismo
14.
Adv Sci (Weinh) ; 11(28): e2309059, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38639389

RESUMEN

Pain, a comorbidity of anxiety disorders, causes substantial clinical, social, and economic burdens. Emerging evidence suggests that propofol, the most commonly used general anesthetic, may regulate psychological disorders; however, its role in pain-associated anxiety is not yet described. This study investigates the therapeutic potential of a single dose of propofol (100 mg kg-1) in alleviating pain-associated anxiety and examines the underlying neural mechanisms. In acute and chronic pain models, propofol decreased anxiety-like behaviors in the elevated plus maze (EPM) and open field (OF) tests. Propofol also reduced the serum levels of stress-related hormones including corticosterone, corticotropin-releasing hormone (CRH), and norepinephrine. Fiber photometry recordings indicated that the calcium signaling activity of CRH neurons in the paraventricular nucleus (PVNCRH) is reduced after propofol treatment. Interestingly, artificially activating PVNCRH neurons through chemogenetics interfered with the anxiety-reducing effects of propofol. Electrophysiological recordings indicated that propofol decreases the activity of PVNCRH neurons by increasing spontaneous inhibitory postsynaptic currents (sIPSCs). Further, reducing the levels of γ-aminobutyric acid type A receptor ß3 (GABAAß3) subunits in PVNCRH neurons diminished the anxiety-relieving effects of propofol. In conclusion, this study provides a mechanistic and preclinical rationale to treat pain-associated anxiety-like behaviors using a single dose of propofol.


Asunto(s)
Ansiedad , Conducta Animal , Modelos Animales de Enfermedad , Neuronas , Núcleo Hipotalámico Paraventricular , Propofol , Receptores de GABA-A , Animales , Propofol/farmacología , Receptores de GABA-A/metabolismo , Ansiedad/tratamiento farmacológico , Ansiedad/metabolismo , Ratones , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Núcleo Hipotalámico Paraventricular/metabolismo , Núcleo Hipotalámico Paraventricular/efectos de los fármacos , Masculino , Conducta Animal/efectos de los fármacos , Dolor/tratamiento farmacológico , Dolor/metabolismo , Ratones Endogámicos C57BL
15.
Cell Biol Int ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654431

RESUMEN

Gestational diabetes mellitus (GDM) is a common disorder in the clinic, which may lead to severe detrimental outcomes both for mothers and infants. However, the underlying mechanisms for GDM are still not clear. In the present study, we performed label-free proteomics using placentas from GDM patients and normal controls. Vitronectin caused our attention among differentially expressed proteins due to its potential role in the pathological progression of GDM. Vitronectin was increased in the placentas of GDM patients, which was confirmed by Western blot analysis. Vitronectin represses insulin signal transduction in trophoblast cells, whereas the knockdown of vitronectin further potentiates insulin-evoked events. Neutralization of CD51/61 abolishes the repressed insulin signal transduction in vitronectin-treated trophoblast cells. Moreover, vitronectin activates JNK in a CD51/61-depedent manner. Inhibition of JNK rescues impaired insulin signal transduction induced by vitronectin. Overall, our data indicate that vitronectin binds CD51/61 in trophoblast cells to activate JNK, and thus induces insulin resistance. In this regard, increased expression of vitronectin is likely a risk factor for the pathological progression of GDM. Moreover, blockade of vitronectin production or its receptors (CD51/61) may have therapeutic potential for dealing with GDM.

16.
Sci Rep ; 14(1): 9564, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671037

RESUMEN

Clarifying the relationship between the man-machine environment and its impact on the tunnel wall drilling task performance (TWDTP) is crucial for enhancing the task performance. Based on a questionnaire survey, indicators of the man-machine environment that affect the TWDTP were proposed in this study, and exploratory factor analysis and a structural equation model were employed to examine the potential factors influencing the task performance and their degrees of influence. By comparing the discrepancy between the perceived performance and importance, the satisfaction of potential factors was evaluated, and the priority order for optimizing these factors was determined by considering the degree of influence and dissatisfaction. The results of survey data analysis based on actual tunnel drilling operation scenarios indicated that tools had the greatest impact on the TWDTP, followed by the quality of the physical environment, while human factors had the least influence on the task performance. Convenient functional maintenance is the key to improving the TWDTP, along with enhancing the quality of the working environment. Once these main aspects are optimized, it is important to consider additional factors such as availability of spare tools, efficient personnel organization, man-tool matching, and safety and health assurance. This research approach provides significant guidance in understanding the relationships between the man-machine environmental factors affecting the performance of complex engineering tasks and identifying key influencing factors, thus providing essential insights for optimizing the TWDTP.

17.
Hum Genomics ; 18(1): 33, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38566168

RESUMEN

The N6-methyladenosine (m6A) RNA modification plays essential roles in multiple biological processes, including stem cell fate determination. To explore the role of the m6A modification in pluripotent reprogramming, we used RNA-seq to map m6A effectors in human iPSCs, fibroblasts, and H9 ESCs, as well as in mouse ESCs and fibroblasts. By integrating the human and mouse RNA-seq data, we found that 19 m6A effectors were significantly upregulated in reprogramming. Notably, IGF2BPs, particularly IGF2BP1, were among the most upregulated genes in pluripotent cells, while YTHDF3 had high levels of expression in fibroblasts. Using quantitative PCR and Western blot, we validated the pluripotency-associated elevation of IGF2BPs. Knockdown of IGF2BP1 induced the downregulation of stemness genes and exit from pluripotency. Proteome analysis of cells collected at both the beginning and terminal states of the reprogramming process revealed that the IGF2BP1 protein was positively correlated with stemness markers SOX2 and OCT4. The eCLIP-seq target analysis showed that IGF2BP1 interacted with the coding sequence (CDS) and 3'UTR regions of the SOX2 transcripts, in agreement with the location of m6A modifications. This study identifies IGF2BP1 as a vital pluripotency-associated m6A effector, providing new insight into the interplay between m6A epigenetic modifications and pluripotent reprogramming.


Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , Animales , Ratones , Células Madre Pluripotentes Inducidas/metabolismo , Diferenciación Celular/genética , Epigénesis Genética , Fibroblastos/metabolismo , Reprogramación Celular/genética
18.
ACS Nano ; 18(11): 8073-8082, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38456633

RESUMEN

Transformable mechanical structures can switch between distinct mechanical states. Whether this kind of structure can be self-assembled from simple building blocks at microscale is a question to be answered. In this work, we propose a self-assembly strategy for these structures based on a nematic monolayer of segmented colloidal rods with lateral cutting. By using Monte Carlo simulation, we find that rods with different cutting degrees can self-assemble into different crystals characterized by bond coordination z that varies from 3 to 6. Among these, we identify a transformable superisostatic structure with pgg symmetry and redundant bonds (z = 5). We show that this structure can support either soft bulk modes or soft edge modes depending on its Poisson's ratio, which can be tuned from positive to negative through a uniform soft deformation. We also prove that the bulk soft modes are associated with states of self-stress along the direction of zero strain during uniform soft deformation. The self-assembled transformable structures may act as mechanical metamaterials with potential applications in micromechanical engineering.

19.
J Nanobiotechnology ; 22(1): 101, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38462598

RESUMEN

BACKGROUND: Radiotheranostics differs from the vast majority of other cancer therapies in its capacity for simultaneous imaging and therapy, and it is becoming more widely implemented. A balance between diagnostic and treatment requirements is essential for achieving effective radiotheranostics. Herein, we propose a proof-of-concept strategy aiming to address the profound differences in the specific requirements of the diagnosis and treatment of radiotheranostics. RESULTS: To validate the concept, we designed an s-tetrazine (Tz) conjugated prostate-specific membrane antigen (PSMA) ligand (DOTA-PSMA-Tz) for 68Ga or 177Lu radiolabeling and tumor radiotheranostics, a trans-cyclooctene (TCO) modified Pd@Au nanoplates (Pd@Au-PEG-TCO) for signal amplification, respectively. We then demonstrated this radiotheranostic strategy in the tumor-bearing mice with the following three-step procedures: (1) i.v. injection of the [68Ga]Ga-PSMA-Tz for diagnosis; (2) i.v. injection of the signal amplification module Pd@Au-PEG-TCO; (3) i.v. injection of the [177Lu]Lu-PSMA-Tz for therapy. Firstly, this strategy was demonstrated in 22Rv1 tumor-bearing mice via positron emission tomography (PET) imaging with [68Ga]Ga-PSMA-Tz. We observed significantly higher tumor uptake (11.5 ± 0.8%ID/g) with the injection of Pd@Au-PEG-TCO than with the injection [68Ga]Ga-PSMA-Tz alone (5.5 ± 0.9%ID/g). Furthermore, we validated this strategy through biodistribution studies of [177Lu]Lu-PSMA-Tz, with the injection of the signal amplification module, approximately five-fold higher tumor uptake of [177Lu]Lu-PSMA-Tz (24.33 ± 2.53% ID/g) was obtained when compared to [177Lu]Lu-PSMA-Tz alone (5.19 ± 0.26%ID/g) at 48 h post-injection. CONCLUSION: In summary, the proposed strategy has the potential to expand the toolbox of pretargeted radiotherapy in the field of theranostics.


Asunto(s)
Neoplasias Colorrectales , Radiofármacos , Masculino , Animales , Ratones , Radioisótopos de Galio , Distribución Tisular , Línea Celular Tumoral , Neoplasias Colorrectales/patología
20.
ACS Appl Mater Interfaces ; 16(13): 16011-16028, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38529951

RESUMEN

Superbug infections and transmission have become major challenges in the contemporary medical field. The development of novel antibacterial strategies to efficiently treat bacterial infections and conquer the problem of antimicrobial resistance (AMR) is extremely important. In this paper, a bimetallic CuCo-doped nitrogen-carbon nanozyme-functionalized hydrogel (CuCo/NC-HG) has been successfully constructed. It exhibits photoresponsive-enhanced enzymatic effects under near-infrared (NIR) irradiation (808 nm) with strong peroxidase (POD)-like and oxidase (OXD)-like activities. Upon NIR irradiation, CuCo/NC-HG possesses photodynamic activity for producing singlet oxygen(1O2), and it also has a high photothermal conversion effect, which not only facilitates the elimination of bacteria but also improves the efficiency of reactive oxygen species (ROS) production and accelerates the consumption of GSH. CuCo/NC-HG shows a lower hemolytic rate and better cytocompatibility than CuCo/NC and possesses a positive charge and macroporous skeleton for restricting negatively charged bacteria in the range of ROS destruction, strengthening the antibacterial efficiency. Comparatively, CuCo/NC and CuCo/NC-HG have stronger bactericidal ability against methicillin-resistant Staphylococcus aureus (MRSA) and ampicillin-resistant Escherichia coli (AmprE. coli) through destroying the cell membranes with a negligible occurrence of AMR. More importantly, CuCo/NC-HG plus NIR irradiation can exhibit satisfactory bactericidal performance in the absence of H2O2, avoiding the toxicity from high-concentration H2O2. In vivo evaluation has been conducted using a mouse wound infection model and histological analyses, and the results show that CuCo/NC-HG upon NIR irradiation can efficiently suppress bacterial infections and promote wound healing, without causing inflammation and tissue adhesions.


Asunto(s)
Infecciones Bacterianas , Staphylococcus aureus Resistente a Meticilina , Animales , Hidrogeles/farmacología , Escherichia coli , Peróxido de Hidrógeno , Especies Reactivas de Oxígeno , Fototerapia , Infecciones Bacterianas/tratamiento farmacológico , Antibacterianos/farmacología , Carbono , Modelos Animales de Enfermedad , Nitrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...