Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 21462, 2023 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-38052818

RESUMEN

The binding and interaction of proteins with nucleic acids such as DNA and RNA constitutes a fundamental biochemical and biophysical process in all living organisms. Identifying and visualizing such temporal interactions in cells is key to understanding their function. To image sites of these events in cells across scales, we developed a method, named PROMPT for PROximal Molecular Probe Transfer, which is applicable to both light and correlative electron microscopy. This method relies on the transfer of a bound photosensitizer from a protein known to associate with specific nucleic acid sequence, allowing the marking of the binding site on DNA or RNA in fixed cells. The method produces a fluorescent mark at the site of their interaction, that can be made electron dense and reimaged at high resolution in the electron microscope. As proof of principle, we labeled in situ the interaction sites between the histone H2B and nuclear DNA. As an example of application for specific RNA localizations we labeled different nuclear and nucleolar fractions of the protein Fibrillarin to mark and locate where it associates with RNAs, also using electron tomography. While the current PROMPT method is designed for microscopy, with minimal variations, it can be potentially expanded to analytical techniques.


Asunto(s)
Ácidos Nucleicos , ARN/metabolismo , Microscopía Electrónica , ADN , Nucléolo Celular/metabolismo
2.
bioRxiv ; 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37808832

RESUMEN

The binding and interaction of proteins with nucleic acids such as DNA and RNA constitutes a fundamental biochemical and biophysical process in all living organisms. Identifying and visualizing such temporal interactions in cells is key to understanding their function. To image sites of these events in cells across scales, we developed a method, named PROMPT for PROximal Molecular Probe Transfer, which is applicable to both light and correlative electron microscopy. This method relies on the transfer of a bound photosensitizer from a protein known to associate with specific nucleic acid sequence, allowing the marking of the binding site on DNA or RNA in fixed cells. The method produces a fluorescent mark at the site of their interaction, that can be made electron dense and reimaged at high resolution in the electron microscope. As proof of principle, we labeled in situ the interaction sites between the histone H2B and nuclear DNA. As an example of application for specific RNA localizations we labeled different nuclear and nucleolar fractions of the protein Fibrillarin to mark and locate where it associates with RNAs, also using electron tomography. While the current PROMPT method is designed for microscopy, with minimal variations, it can be potentially expanded to analytical techniques.

3.
bioRxiv ; 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37662194

RESUMEN

We introduce Fe-TAML, a small molecule-based peroxidase as a versatile new member of the correlated fluorescence and electron microscopy toolkit. The utility of the probe is demonstrated by high resolution imaging of newly synthesized DNA (through biorthogonal labeling), genetically tagged proteins (using HaloTag), and untagged endogenous proteins (via immunostaining). EM visualization in these applications is facilitated by exploiting Fe-TAML's catalytic activity for the deposition of localized osmiophilic precipitates based on polymerized 3,3'-diaminobenzidine. Optimized conditions for synthesizing and implementing Fe-TAML based probes are also described. Overall, Fe-TAML is a new chemical biology tool that can be used to visualize diverse biomolecular species along nanometer and micron scales within cells.

4.
Fish Shellfish Immunol ; 141: 109025, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37625733

RESUMEN

Zinc plays a crucial role in the antioxidant capacity, and inflammatory response of aquatic species, but its impact on largemouth bass Micropterus salmoides is rarely reported. Therefore, this paper aimed to investigate the effects of different levels of zinc on the growth performance, histopathology, antioxidant capacity, and inflammatory cytokines of largemouth bass Micropterus salmoides. Fish with an initial weight of 7.84 ± 0.06 g were cultured for 10 weeks. Five experimental diets were prepared with supplemented proteinate Zn (Bioplex Zn, Alltech) (0, 30, 60, 90, and 120 mg/kg), which were named the Zn-42, Zn-73, Zn-103, Zn-133, and Zn-164 groups. No evident difference was found between the dietary zinc level and the survival rate, the crude lipid content of the whole fish, or the visceral somatic index. Weight gain, condition factor, whole-body crude protein content, interleukin-10, and transforming growth factor beta gene expression were gradually enhanced with up to 102.68 mg/kg zinc and decreased at higher levels. The hepatosomatic index, feed conversion ratio, malondialdehyde level in the liver, aspartate aminotransferase, and alanine transaminase activity in the serum, gradually decreased up to 102.68 mg/kg zinc, and gradually increased beyond this. Activation of the nuclear factor erythroid-derived 2-like 2/Kelch-like ECH-associated protein 1 signaling pathway gradually up-regulated the mRNA levels and activities of glutathione peroxidase, total antioxidant capacity, catalase, and superoxide dismutase in the liver, this antioxidant ability was lower when the zinc was greater than 102.68 mg/kg. The gene expressions of nuclear factor-k-gene binding and pro-inflammation cytokines (interleukin-1ß, interleukin-15, tumor necrosis factor alpha, and interleukin-8) were up-regulated up to 102.68 mg/kg zinc and then gradually repressed. In conclusion, using broken line analysis to estimate weight gain and Zn proteinate as the zinc source, the recommended dietary zinc for largemouth bass is 66.57 mg/kg zinc.


Asunto(s)
Antioxidantes , Lubina , Animales , Antioxidantes/metabolismo , Suplementos Dietéticos/análisis , Dieta/veterinaria , Citocinas/genética , Zinc , Alimentación Animal/análisis
5.
bioRxiv ; 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37425712

RESUMEN

Ca2+ plays many critical roles in cell physiology and biochemistry, leading researchers to develop a number of fluorescent small molecule dyes and genetically encodable probes that optically report changes in Ca2+ concentrations in living cells. Though such fluorescence-based genetically encoded Ca2+ indicators (GECIs) have become a mainstay of modern Ca2+ sensing and imaging, bioluminescence-based GECIs-probes that generate light through oxidation of a small-molecule by a luciferase or photoprotein-have several distinct advantages over their fluorescent counterparts. Bioluminescent tags do not photobleach, do not suffer from nonspecific autofluorescent background, and do not lead to phototoxicity since they do not require the extremely bright extrinsic excitation light typically required for fluorescence imaging, especially with 2-photon microscopy. Current BL GECIs perform poorly relative to fluorescent GECIs, producing small changes in bioluminescence intensity due to high baseline signal at resting Ca2+ concentrations and suboptimal Ca2+ affinities. Here, we describe the development of a new bioluminescent GECI, "CaBLAM," which displays a much higher contrast (dynamic range) than previously described bioluminescent GECIs coupled with a Ca2+ affinity suitable for capturing physiological changes in cytosolic Ca2+ concentration. Derived from a new variant of Oplophorus gracilirostris luciferase with superior in vitro properties and a highly favorable scaffold for insertion of sensor domains, CaBLAM allows for single-cell and subcellular resolution imaging of Ca2+ dynamics at high frame rates in cultured neurons. CaBLAM marks a significant milestone in the GECI timeline, enabling Ca2+ recordings with high spatial and temporal resolution without perturbing cells with intense excitation light.

6.
Front Nutr ; 9: 1030583, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36438722

RESUMEN

An 8-week feeding trial was performed to assess the influence of a gradient of protein levels (14.38-45.23%) on flesh quality, skin color, amino acid profile, collagen, antioxidant capability, and antioxidant-related signaling molecule expression of the softshell turtle (Pelodiscus sinensis). Hardness, gumminess, chewiness, and yellowness values in the plastron and carapace, along with collagen, superoxide dismutase, catalase, total antioxidant capacity, and glutathione peroxidase, all improved with elevating dietary protein up to 26.19%, after which they leveled off. Additionally, total amino acids, flavor amino acids, essential amino acids, and non-essential amino acids in the muscle, as well as the expression of copper/zinc superoxide dismutase, glutathione peroxidase, catalase, manganese superoxide dismutase, NF-E2-related factor 2 were all enhanced by increasing the dietary protein level but not changed by higher protein levels. When dietary protein levels were less than 26.19%, the mRNA expression of Kelch-like ECH-associated protein 1, malondialdehyde, and redness values in the carapace and plastron were reduced, as was the lightness values of the carapace, all of which plateaued at higher protein levels. Using catalase activity and malondialdehyde as the indicators and applying a broken-line analysis, the optimal dietary protein level for P. sinensis was inferred to be 26.07 and 26.06% protein, respectively. In summary, an optimal protein input improved turtle flesh quality by strengthening antioxidant capacity in muscle tissue and by regulating the expression of antioxidant-related enzymes via the Nrf2/keap1 signaling pathway.

7.
Front Physiol ; 13: 985046, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36176772

RESUMEN

The yellow catfish (P. fulvidraco), as one of the economically-relevant freshwater fish found in China, cannot tolerate cold stress. Understanding the physiological and biochemical mechanisms under cold stress may provide insights for improving yellow catfish management in the cold. Therefore, we investigated the metabolic and intestinal microbiota changes in cold stress in response to induced cold stress. We found that cold stress in yellow catfish lead to a significant increase in the consumption of glucose and triglycerides, as well as increased use of cholesterol as an alternate energy source. Moreover, cold stress also activated several significant biological processes in the fish such as thermogenesis, oxidative phosphorylation, the spliceosome machinery, RNA transport, protein processing that occurs in the ER, and purine and pyrimidine metabolism pathways involved in energy production. On the other hand, many other mechanisms like insulin resistance, starch and sucrose metabolism, and the glyoxylate and dicarboxylate metabolic pathways that also served as energy production pathways were weakened. Furthermore, organic acids and their derivatives as well as the lipids and lipid-like molecules were mainly altered in cold stress; prenol lipids, steroids, and their derivatives were significantly upregulated, while fatty acyls and glycerophospholipids were significantly downregulated. Transcriptomic and metabolomic integrated analysis data revealed that carbohydrate metabolism, lipid metabolism, amino acid metabolism, and nucleotide metabolism were involved in cold stress resistance. In addition, the intestinal microbiota abundance was also reduce and the pathogenic bacteria of plesiomonas was rapidly appreciation, which suggesting that cold stress also impaired intestinal health. This research study could offer insights into winter management or the development of feed to promote cold resistance in yellow catfish.

8.
Fish Shellfish Immunol ; 123: 127-135, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35202804

RESUMEN

In aquatic animals, dietary protein plays a crucial role in their growth and immunity. A feeding trial was conducted on soft-shelled turtles (Pelodiscus sinensis) to assess the effects of various levels of protein on the specific growth rate (SGR), ambient water quality (total ammonia nitrogen (TAN), total nitrogen (TN) and total phosphorus (TP)), hematological parameters (respiratory burst (RB), red blood cell count (RBC), albumin content (Alb), hemoglobin level (Hb) and osmolality), plasma immunoglobulin M (IgM) levels and lysozyme activity. Soft-shelled turtles weighing about 4.02 g were fed fish meal-based diets with 14.38%, 20.41%, 26.19%, 32.23%, 37.63% and 45.23% protein for 8 weeks. SGR, RBC, Hb, Alb, RB, IgM and lysozyme activity were enhanced as the dietary protein was increased from 14.38% to 26.19%, then reached a plateau. For identical feeding times, TAN and TN were increased with elevating dietary protein levels. While, no statistically significant differences were observed among the 26.19%, 32.23% and 37.63% groups. When the turtles were cultivated for 56 days and fed with 45.23% protein, the TP in the culturing water was higher than that in the other groups. An increase in dietary protein level up to 26.19% increased the RNA/DNA ratio, which subsequently plateaued at a steady level. The levels of dietary protein had no impact on osmolality or alkaline phosphatase (AKP) activity. On the basis of broken-line analyses derived from SGR, the optimum dietary protein level for soft-shelled turtles was found to be 27.11% protein.


Asunto(s)
Tortugas , Animales , Amoníaco/metabolismo , Proteínas en la Dieta/metabolismo , ADN/metabolismo , Inmunoglobulina M/metabolismo , Muramidasa/metabolismo , Nitrógeno/metabolismo , ARN/metabolismo , Tortugas/genética , Calidad del Agua
9.
J Phys Chem B ; 126(3): 708-715, 2022 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-35040322

RESUMEN

Alteration of the hydrogen-bond (H-bond) network by trehalose is acknowledged as a bioprotective agent. However, most studies exploring the hydration superiority of the trehalose structure are limited structure are limited by the computational cost or a narrow-range spectrum. In the present study, the structural and dynamical behaviors of the H-bond network of trehalose and maltose solutions were observed and compared with a broadband dielectric spectrum (100 MHz-18 THz) to investigate the influence of the trehalose structure on the bioprotective function. From the relaxation time, the reorientation cooperativity, resonant frequency, and damping constant of water-water vibration, the symmetric structure of trehalose allowed a more significant H-bond strengthening effect and homogeneous aqueous environment. In contrast, the difference in the hydration number between trehalose and maltose was negligible. Thus, the enhanced H-bond strengthening effect and homogeneous aqueous environment owing to the symmetric structure are the essential factors that contribute to the remarkable bioprotective effect of trehalose.


Asunto(s)
Trehalosa , Agua , Enlace de Hidrógeno , Maltosa/química , Trehalosa/química , Agua/química
10.
Fish Shellfish Immunol ; 118: 303-312, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34481088

RESUMEN

Zinc (Zn) plays a role in the antioxidant capacity and immunity of aquatic animals. A twelve-week feeding experiment was performed to estimate the impact of dietary zinc on antioxidant enzyme-related gene expression, antioxidant enzyme activity and non-specific immune functions of soft-shelled turtles, Pelodiscus sinensis. Six fishmeal-based experimental diets with 32.45% protein were formulated, which contained 35.43, 46.23, 55.38, 66.74, 75.06 and 85.24 mg/kg Zn, respectively. Catalase (CAT), glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) levels improved with an elevation in dietary Zn from 35.43 to 55.38 mg/kg and then reduced when dietary Zn was further elevated. The expression levels of Nrf2 and antioxidant-related genes CuZnSOD, MnSOD, CAT, GPX1, GPX2, GPX3 and GPX4 escalated with elevating Zn concentration up to 55.38 mg/kg in diets and then reduced as dietary Zn elevated. The expression levels of Kelch-like ECH-associating protein 1 (keap1) showed a reverse trend with that of Nrf2. The contents of malondialdehyde (MDA) in the 55.38 and 66.74 mg/kg Zn diet-fed groups were the lowest. Alkaline phosphatase activity (AKP), superoxide anion (O2-), lysozyme activity and total antioxidant capacity (T-AOC) improved with an escalation in dietary Zn concentration up to 66.74 mg/kg. Optimal dietary Zn improved antioxidant capability, immunity, and antioxidant enzyme-related gene expression. The dietary Zn demand for soft-shelled turtles were 60.93 and 61.63 mg/kg, based on second regression analysis of SOD and T-AOC activity, respectively.


Asunto(s)
Antioxidantes , Tortugas , Alimentación Animal/análisis , Animales , Dieta/veterinaria , Suplementos Dietéticos , Expresión Génica , Proteína 1 Asociada A ECH Tipo Kelch , Factor 2 Relacionado con NF-E2/genética , Superóxido Dismutasa/metabolismo , Tortugas/genética , Tortugas/metabolismo , Zinc
11.
Mitochondrial DNA B Resour ; 6(10): 2788-2790, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34514127

RESUMEN

In this study, we report the complete mitochondrial genome of Stichopus chloronotus. The mitogenome was 16,247 base pairs (58.55% A + T content) in length, comprising a total of 37 genes, including 13 protein-coding genes, 22 transfer RNA genes and 2 ribosomal RNA genes. To resolve the phylogenetic position of S. chloronotus, we analyzed all mitochondrial protein-coding genes from 27 species within the Echinodermata. The results showed that S. chloronotus belonged to the family Stichopodidae and was more closely related to tropical Stichopus species (S. horrens and S. monotuberculatus) than to other species. Our results will be useful for evolutionary analysis of sea cucumber species.

12.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34088839

RESUMEN

To explore how pathogenic mutations of the multidomain leucine-rich repeat kinase 2 (LRRK2) hijack its finely tuned activation process and drive Parkinson's disease (PD), we used a multitiered approach. Most mutations mimic Rab-mediated activation by "unleashing" kinase activity, and many, like the kinase inhibitor MLi-2, trap LRRK2 onto microtubules. Here we mimic activation by simply deleting the inhibitory N-terminal domains and then characterize conformational changes induced by MLi-2 and PD mutations. After confirming that LRRK2RCKW retains full kinase activity, we used hydrogen-deuterium exchange mass spectrometry to capture breathing dynamics in the presence and absence of MLi-2. Solvent-accessible regions throughout the entire protein are reduced by MLi-2 binding. With molecular dynamics simulations, we created a dynamic portrait of LRRK2RCKW and demonstrate the consequences of kinase domain mutations. Although all domains contribute to regulating kinase activity, the kinase domain, driven by the DYGψ motif, is the allosteric hub that drives LRRK2 regulation.


Asunto(s)
Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/química , Simulación de Dinámica Molecular , Secuencias de Aminoácidos , Humanos , Espectrometría de Masas de Intercambio de Hidrógeno-Deuterio , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Dominios Proteicos , Transporte de Proteínas
13.
J Microsc ; 283(2): 127-144, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33844293

RESUMEN

The technique of colour EM that was recently developed enabled localisation of specific macromolecules/proteins of interest by the targeted deposition of diaminobenzidine (DAB) conjugated to lanthanide chelates. By acquiring lanthanide elemental maps by energy-filtered transmission electron microscopy (EFTEM) and overlaying them in pseudo-colour over the conventional greyscale TEM image, a colour EM image is generated. This provides a powerful tool for visualising subcellular component/s, by the ability to clearly distinguish them from the general staining of the endogenous cellular material. Previously, the lanthanide elemental maps were acquired at the high-loss M4,5 edge (excitation of 3d electrons), where the characteristic signal is extremely low and required considerably long exposures. In this paper, we explore the possibility of acquiring the elemental maps of lanthanides at their N4,5 edge (excitation of 4d electrons), which occurring at a much lower energy-loss regime, thereby contains significantly greater total characteristic signal owing to the higher inelastic scattering cross-sections at the N4,5 edge. Acquiring EFTEM lanthanide elemental maps at the N4,5 edge instead of the M4,5 edge, provides ∼4× increase in signal-to-noise and ∼2× increase in resolution. However, the interpretation of the lanthanide maps acquired at the N4,5 edge by the traditional 3-window method, is complicated due to the broad shape of the edge profile and the lower signal-above-background ratio. Most of these problems can be circumvented by the acquisition of elemental maps with the more sophisticated technique of EFTEM Spectrum Imaging (EFTEM SI). Here, we also report the chemical synthesis of novel second-generation DAB lanthanide metal chelate conjugates that contain 2 lanthanide ions per DAB molecule in comparison with 0.5 lanthanide ion per DAB in the first generation. Thereby, fourfold more Ln3+ per oxidised DAB would be deposited providing significant amplification of signal. This paper applies the colour EM technique at the intermediate-loss energy-loss regime to three different cellular targets, namely using mitochondrial matrix-directed APEX2, histone H2B-Nucleosome and EdU-DNA. All the examples shown in the paper are single colour EM images only.


Asunto(s)
Elementos de la Serie de los Lantanoides , Energía Filtrada en la Transmisión por Microscopía Electrónica , Diagnóstico por Imagen , Electrones , Coloración y Etiquetado
14.
ACS Chem Neurosci ; 12(4): 626-639, 2021 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-33522227

RESUMEN

Communication between neurons relies on the release of diverse neurotransmitters, which represent a key-defining feature of a neuron's chemical and functional identity. Neurotransmitters are packaged into vesicles by specific vesicular transporters. However, tools for labeling and imaging synapses and synaptic vesicles based on their neurochemical identity remain limited. We developed a genetically encoded probe to identify glutamatergic synaptic vesicles at the levels of both light and electron microscopy (EM) by fusing the mini singlet oxygen generator (miniSOG) probe to an intralumenal loop of the vesicular glutamate transporter-2. We then used a 3D imaging method, serial block-face scanning EM, combined with a deep learning approach for automatic segmentation of labeled synaptic vesicles to assess the subcellular distribution of transporter-defined vesicles at nanometer scale. These tools represent a new resource for accessing the subcellular structure and molecular machinery of neurotransmission and for transmitter-defined tracing of neuronal connectivity.


Asunto(s)
Neuronas , Sinapsis , Animales , Ácido Glutámico , Ratones , Microscopía Electrónica , Vesículas Sinápticas , Proteína 1 de Transporte Vesicular de Glutamato , Proteína 2 de Transporte Vesicular de Glutamato
15.
Anim Nutr ; 6(1): 80-84, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32211532

RESUMEN

This experiment was conducted to investigate the effects of dietary lipid-to-carbohydrate ratio on growth and carbohydrate metabolism in juvenile cobia (Rachycentron canadum). Six isonitrogenous diets were prepared to vary in lipid-to-carbohydrate ratio (g/g) as follows: D1, 2.26; D2, 1.31; D3, 0.78; D4, 0.47; D5, 0.34; and D6, 0.23. Cobias were fed to satiety for 8 weeks. The weight gain and protein efficiency ratio in D1 group were significantly lower than those in other groups (P < 0.05), accompanied by a lower level of feed conversion ratio (P < 0.05). Protein retention efficiency in D4 and D6 and whole body protein in D4 and D5 were significantly higher than those in D1 group (P < 0.05). Survival rate in D4 group was the highest among all groups and was significantly higher than that in D1, D2 and D5 (P < 0.05). In terms of serum triglyceride, D1 and D2 were significantly higher than D6 (P < 0.05). Hepatosomatic index in D3 and D4 was significantly lower than that in D1 (P < 0.05). Fructose-1,6-diphosphatase in D4 was significantly higher than that in D1 and D3 (P < 0.05). Phosphofructokinase in D3 and D4 and malic enzyme in D4 and D5 were significantly higher than those in other groups (P < 0.05). Results indicate that cobia utilizes carbohydrates as energy source more efficiently than it utilizes lipids. The optimal lipid-to-carbohydrate ratio in juvenile cobia diets is 0.47.

16.
Cell Chem Biol ; 26(10): 1407-1416.e5, 2019 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-31378710

RESUMEN

A protein-fragment complementation assay (PCA) for detecting and localizing intracellular protein-protein interactions (PPIs) was built by bisection of miniSOG, a fluorescent flavoprotein derived from the light, oxygen, voltage (LOV)-2 domain of Arabidopsis phototropin. When brought together by interacting proteins, the fragments reconstitute a functional reporter that permits tagged protein complexes to be visualized by fluorescence light microscopy (LM), and then by standard as well as "multicolor" electron microscopy (EM) via the photooxidation of 3-3'-diaminobenzidine and its derivatives.


Asunto(s)
Proteínas de Arabidopsis/química , Flavoproteínas/química , Proteínas Luminiscentes/química , 3,3'-Diaminobencidina/química , Arabidopsis/química , Células Cultivadas , Células HEK293 , Células HeLa , Humanos , Microscopía Electrónica , Microscopía Fluorescente , Oxidación-Reducción , Procesos Fotoquímicos , Unión Proteica
17.
Elife ; 72018 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-29749931

RESUMEN

Electron microscopy (EM) offers unparalleled power to study cell substructures at the nanoscale. Cryofixation by high-pressure freezing offers optimal morphological preservation, as it captures cellular structures instantaneously in their near-native state. However, the applicability of cryofixation is limited by its incompatibility with diaminobenzidine labeling using genetic EM tags and the high-contrast en bloc staining required for serial block-face scanning electron microscopy (SBEM). In addition, it is challenging to perform correlated light and electron microscopy (CLEM) with cryofixed samples. Consequently, these powerful methods cannot be applied to address questions requiring optimal morphological preservation. Here, we developed an approach that overcomes these limitations; it enables genetically labeled, cryofixed samples to be characterized with SBEM and 3D CLEM. Our approach is broadly applicable, as demonstrated in cultured cells, Drosophila olfactory organ and mouse brain. This optimization exploits the potential of cryofixation, allowing for quality ultrastructural preservation for diverse EM applications.


Asunto(s)
Criopreservación/métodos , Microscopía Electrónica de Rastreo/métodos , Estructuras Animales/ultraestructura , Animales , Encéfalo/ultraestructura , Drosophila , Imagenología Tridimensional/métodos , Ratones , Órganos de los Sentidos/ultraestructura
18.
Fish Physiol Biochem ; 42(1): 249-61, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26394863

RESUMEN

We investigated the effects of deficient and excess dietary selenium (Se) on growth, blood cells apoptosis and liver heat shock protein 70 (HSP70) expression in juvenile yellow catfish (Pelteobagrus fulvidraco). After 8 weeks, yellow catfish (initial weight: 2.12 ± 0.01 g) fed isonitrogenous and isolipid diets containing <0.05 (deficient dietary Se) or 6.5 (excess dietary Se) mg Se/kg displayed a significantly lower weight gain ratio (WGR) than those fed a diet containing 0.23 (normal dietary Se) mg Se/kg. As dietary Se levels increased, liver Se concentration, glutathione peroxidase activity and the hepatosomatic index increased significantly. Plasma glucose concentration was highest in the normal treatment compared with the excess dietary Se treatment. Both deficient and excess dietary Se lead to increased reactive oxygen species (ROS) production and apoptosis ratio in blood cells, whereas only excess dietary Se increased their cytoplasmic free-Ca(2+) (CF-Ca(2+)) concentration. Excess dietary Se also resulted in the highest level of HSP70 expression, thereby possibly providing a protective mechanism against oxidative stress. These results indicate that both deficient and excess dietary Se restrained the growth of juvenile yellow catfish and caused oxidative stress. The overproduction of ROS may act as a signal molecule mediate apoptosis when dietary Se deficiency. Both ROS and CF-Ca(2+) were recorded when dietary Se excess, suggesting that Ca(2+) may be activated by Se and play a major role during Se-induced oxidative stress and cell apoptosis.


Asunto(s)
Bagres , Selenio/deficiencia , Selenio/farmacología , Animales , Apoptosis/efectos de los fármacos , Células Sanguíneas/efectos de los fármacos , Glucemia/análisis , Bagres/crecimiento & desarrollo , Bagres/metabolismo , Dieta , Proteínas de Peces/metabolismo , Glutatión Peroxidasa/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Óxido Nítrico/metabolismo , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
19.
Front Cell Neurosci ; 8: 468, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25698922

RESUMEN

Pannexin2 (Panx2) is the largest of three members of the pannexin proteins. Pannexins are topologically related to connexins and innexins, but serve different functional roles than forming gap junctions. We previously showed that pannexins form oligomeric channels but unlike connexins and innexins, they form only single membrane channels. High levels of Panx2 mRNA and protein in the Central Nervous System (CNS) have been documented. Whereas Pannexin1 (Panx1) is fairly ubiquitous and Pannexin3 (Panx3) is found in skin and connective tissue, both are fully glycosylated, traffic to the plasma membrane and have functions correlated with extracellular ATP release. Here, we describe trafficking and subcellular localizations of exogenous Panx2 and Panx1 protein expression in MDCK, HeLa, and HEK 293T cells as well as endogenous Panx1 and Panx2 patterns in the CNS. Panx2 was found in intracellular localizations, was partially N-glycosylated, and localizations were non-overlapping with Panx1. Confocal images of hippocampal sections immunolabeled for the astrocytic protein GFAP, Panx1 and Panx2 demonstrated that the two isoforms, Panx1 and Panx2, localized at different subcellular compartments in both astrocytes and neurons. Using recombinant fusions of Panx2 with appended genetic tags developed for correlated light and electron microscopy and then expressed in different cell lines, we determined that Panx2 is localized in the membrane of intracellular vesicles and not in the endoplasmic reticulum as initially indicated by calnexin colocalization experiments. Dual immunofluorescence imaging with protein markers for specific vesicle compartments showed that Panx2 vesicles are early endosomal in origin. In electron tomographic volumes, cross-sections of these vesicles displayed fine structural details and close proximity to actin filaments. Thus, pannexins expressed at different subcellular compartments likely exert distinct functional roles, particularly in the nervous system.

20.
J Neurosci ; 33(6): 2605-15, 2013 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-23392688

RESUMEN

Modifications to the gene encoding human α-synuclein have been linked to the development of Parkinson's disease. The highly conserved structure of α-synuclein suggests a functional interaction with membranes, and several lines of evidence point to a role in vesicle-related processes within nerve terminals. Using recombinant fusions of human α-synuclein, including new genetic tags developed for correlated light microscopy and electron microscopy (the tetracysteine-biarsenical labeling system or the new fluorescent protein for electron microscopy, MiniSOG), we determined the distribution of α-synuclein when overexpressed in primary neurons at supramolecular and cellular scales in three dimensions (3D). We observed specific association of α-synuclein with a large and otherwise poorly characterized membranous organelle system of the presynaptic terminal, as well as with smaller vesicular structures within these boutons. Furthermore, α-synuclein was localized to multiple elements of the protein degradation pathway, including multivesicular bodies in the axons and lysosomes within neuronal cell bodies. Examination of synapses in brains of transgenic mice overexpressing human α-synuclein revealed alterations of the presynaptic endomembrane systems similar to our findings in cell culture. Three-dimensional electron tomographic analysis of enlarged presynaptic terminals in several brain areas revealed that these terminals were filled with membrane-bounded organelles, including tubulovesicular structures similar to what we observed in vitro. We propose that α-synuclein overexpression is associated with hypertrophy of membrane systems of the presynaptic terminal previously shown to have a role in vesicle recycling. Our data support the conclusion that α-synuclein is involved in processes associated with the sorting, channeling, packaging, and transport of synaptic material destined for degradation.


Asunto(s)
Neuronas/química , Neuronas/metabolismo , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/análisis , alfa-Sinucleína/biosíntesis , Animales , Células Cultivadas , Células HEK293 , Humanos , Ratones , Ratones Transgénicos , Microscopía Electrónica/métodos , Microscopía de Polarización/métodos , Neuronas/ultraestructura , Enfermedad de Parkinson/patología , Ratas , Ratas Sprague-Dawley , Fracciones Subcelulares/metabolismo , Fracciones Subcelulares/ultraestructura , alfa-Sinucleína/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...