Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Condens Matter ; 35(49)2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37659402

RESUMEN

In the past decades, uranium silicide (U3Si2) as a promising accident tolerant fuel (ATF) has drawn considerable attention in the field of nuclear physics. In comparison with traditional nuclear fuel (UO2), the U3Si2has higher thermal conductivity and uranium density, thereby resulting in lower centerline temperatures and better fuel economy. However, during the nuclear fission reaction, some unexpected fission products, such as Xe and Cs, are released and form the defective states. In this study, we explore the influence of Xe and Cs on the thermal conductivity of the U3Si2lattice from 200 to 1500 K using density functional theory calculations combined with Boltzmann transport equation. Our results reveal that the lattice and electronic thermal conductivities of defective U3Si2are reduced at a constant temperature, as compared with that of ideal system, thus resulting in a decrease of the total thermal conductivity. In the case of Cs occupation at U1 site, the total thermal conductivity (4.42 W mK-1) is decreased by ∼56% at 300 K, as compared with the value of 9.99 W mK-1for ideal system. With U1 and Si sites being occupied by Xe, the total thermal conductivities (4.45 and 6.52 W mK-1) are decreased by ∼55% and 35% at 300 K, respectively. The presented results suggest that the U3Si2has potential as a promising ATF at high temperatures.

2.
Anal Chim Acta ; 1277: 341680, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37604605

RESUMEN

Accurate and sensitive detection of chloramphenicol (CAP) in natural samples is essential for ensuring human health. Herein, an enzyme-regulated fluorescence sensor using Fe3O4@COF/Fe3+ probe, is developed for CAP determination. Fe3O4@COF, synthesized via hydrothermal method, exhibits dual functions as a magnetic carrier and signal probe. Bovine serum albumin conjugated-chloramphenicol, adsorbed on the surface of Fe3O4@COF, competes with CAP for antibody binding. The antibody interacts with alkaline phosphatase via the biotin-streptavidin system. Meanwhile, ascorbic acid, produced from the enzyme-catalyzed reaction dominated by alkaline phosphatase, effectively restores the fluorescence of Fe3O4@COF that is quenched by Fe3+. After experimental verification and gradual optimization, a logarithmic linear relationship between CAP concentration and fluorescence intensity is established in the range of 2 × 10-4∼10 µg mL-1, with a good limit of detection (9.2 × 10-5 µg mL-1). Proposed method exhibits excellent stability (15 days) and reusability (8 cycles), providing a sensitive and reliable method for accurate CAP detection. The readouts show good agreement with HPLC and recoveries during laboratory and natural CAP analysis.


Asunto(s)
Fosfatasa Alcalina , Colorantes Fluorescentes , Humanos , Anticuerpos , Cloranfenicol , Inmunoensayo
3.
J Phys Condens Matter ; 34(50)2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36317966

RESUMEN

In the past several years, the U3Si has been suggested as an alternative nuclear fuel for light water reactors due to its high uranium density and outstanding thermal conductivity. In order to gain fundamental insights into the behavior of fission products in U3Si, the trapping and migration behaviors of the fission products Xe and Cs in U3Si are investigated using density functional theory calculations in this work. UnderU-rich and Si-rich conditions, both the Xe and Cs atoms prefer to substitute for Si andUatoms, respectively. Besides, both Xe and Cs tend to migrate through the vacancy-mechanism. It is noticeable that Xe diffuses faster and forms Xe bubbles more easily than Cs, which is mainly caused by the weaker interaction between Xe and its surrounding atoms.

4.
Phys Chem Chem Phys ; 24(7): 4287-4297, 2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35107460

RESUMEN

In recent years, U3Si2 has been proposed as an alternative nuclear fuel material to uranium dioxide (UO2) because of its intrinsically high uranium density and thermal conductivity. However, the operation environment in the nuclear reactor is complex and extreme, such as in-pile neutron irradiation, and thus it is necessary to explore the radiation response behavior of U3Si2 and the physical properties of its damaged states. In the present study, first-principles calculations based on density functional theory were carried out to investigate the mechanical and electronic properties of defective U3Si2. Our results showed that the defect stability in U3Si2, except its interstitial defects, is dependent on its chemical environment. When vacancy, antisite or interstitial defects are introduced into U3Si2, its elastic modulus are decreased and its ductility is enhanced. Although the presence of defects in U3Si2 does not change its metallic nature and the electron distribution in its Fermi level, their effect on the partial chemical bonding interaction is significant. This study suggests that under a radiation environment, the created defects in U3Si2 remarkably affect its mechanical and electronic properties.

5.
J Phys Condens Matter ; 34(16)2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35114649

RESUMEN

In the past several decades, the U3Si2has received much attention for the development of accident tolerant fuel in light water reactors because of its superior thermal conductivity and higher uranium density. In this study, density functional theory calculations have been carried out to study the occupation and diffusion behaviors of fission products Xe and Cs in U3Si2. It is revealed that the occupation sites of Xe and Cs depend on the chemical environment, and both of Xe and Cs are favorable to substitute for U or Si sites. The diffusions of Xe and Cs in U3Si2are predicted to be via the vacancy mechanism and both of Xe and Cs form cluster easily. As compared with Cs, the Xe exhibits a smaller solubility, faster diffusion as well as stronger clustering tendency, which may cause larger bubble size for Xe than Cs under the same conditions in U3Si2. The differences in the diffusion behaviors between Xe and Cs mainly result from their different valence electronic configurations and different atomic radii.

6.
Inorg Chem ; 60(3): 1388-1397, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33476137

RESUMEN

Exploring new structural materials with strong He damage tolerance is one of the key tasks for the development of nuclear reactors. Helium (He), one of the most common elements in the nuclear environment, often forms undesired bubbles in metallic materials and may result in void swelling as well as high-temperature intergranular embrittlement. In this study, the behaviors of He in high-entropy alloy (HEA) TiZrHfMoNb and its constituents are systematically investigated both theoretically and experimentally. Density functional theory calculations show that the He atom prefers to occupy tetrahedral and octahedral interstitial sites in a HEA. The migration pathway for He in TiZrHfMoNb is explored and the migration energy barrier is determined. Besides, the He clustering behavior in TiZrHfMoNb is investigated. Through transmission electron microscopy analysis, a smaller He bubble size is observed in TiZrHfMoNb than in Ti, which is proposed to result from the lower tendency to form He clusters, a weaker coarsening effect, and severe lattice distortion in HEA. The current study thus provides deep insights into the He behaviors in HEAs and may help to develop structural materials with enhanced He damage tolerance in nuclear reactors.

7.
Inorg Chem ; 59(14): 9774-9782, 2020 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-32589411

RESUMEN

The high entropy alloy is promising for hydrogen storage, especially in regard to its adjustable hydrogen storage properties. Despite several experimental investigations, there still lacks a detailed atomic-level understanding of the hydrogenation process. In this study, based on first-principles calculations, the hydrogen behaviors and microstructural evolution in high entropy alloy TiZrHfMoNb during the hydrogen absorption are investigated systematically. At low hydrogen content, hydrogen atoms prefer to occupy the octahedral interstitial sites of the BCC phase, which is different from that in BCC pure metals; when the hydrogen content reaches 1.08 wt %, the BCC TiZrHfMoNb hydrides transform into FCC phase, and hydrogen atoms are more favorable to occupy the tetrahedral interstitial sites. Further radial distribution function (RDF) analysis indicates that the enhanced disorder of bonds and decreased lattice distortion of the metal structure destabilize the BCC TiZrHfMoNb hydride and eventually induce the BCC → FCC phase transformation, which is quite different from that in conventional alloys; the difference originates from the severe lattice distortion in high entropy alloy. The phonon spectra of different TiZrHfMoNb hydrides show that the hydride with a H/M ratio of 2 dynamically has a stable lattice, corresponding to a hydrogen storage capacity of 1.94 wt %. The present study demonstrates that the high entropy alloys have unique hydrogen absorption ability, which may advance the related experimental and theoretical studies.

8.
Nanomaterials (Basel) ; 9(3)2019 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-30897701

RESUMEN

In recent years, high-entropy alloys have been proposed as potential hydrogen storage materials. Despite a number of experimental efforts, there is a lack of theoretical understanding regarding the hydrogen absorption behavior of high-entropy alloys. In this work, the hydrogen storage properties of a new TiZrHfScMo high-entropy alloy are investigated. This material is synthesized successfully, and its structure is characterized as body-centered cubic. Based on density functional theory, the lattice constant, formation enthalpy, binding energy, and electronic properties of hydrogenated TiZrHfScMo are all calculated. The calculations reveal that the process of hydrogenation is an exothermic process, and the bonding between the hydrogen and metal elements are of covalent character. In the hydrogenated TiZrHfScMo, the Ti and Sc atoms lose electrons and Mo atoms gain electrons. As the H content increases, the bonding is weakened, and the and bonding are strengthened. Our calculations demonstrate that the TiZrHfScMo high-entropy alloy is a promising hydrogen storage material, and different alloy elements play different roles in the hydrogen absorption process.

9.
Nanomaterials (Basel) ; 9(2)2019 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-30759830

RESUMEN

An equiatomic TiZrHfMoNb high-entropy alloy (HEA) was developed as a solar thermal energy storage material due to its outstanding performance of hydrogen absorption. The TiZrHfMoNb alloy transforms from a body-centered cubic (BCC) structure to a face-centered cubic (FCC) structure during hydrogen absorption and can reversibly transform back to the BCC structure after hydrogen desorption. The theoretical calculations demonstrated that before hydrogenation, the BCC structure for the alloy has more stable energy than the FCC structure while the FCC structure is preferred after hydrogenation. The outstanding hydrogen absorption of the reversible single-phase transformation during the hydrogen absorption⁻desorption cycle improves the hydrogen recycling rate and the energy efficiency, which indicates that the TiZrHfMoNb alloy could be an excellent candidate for solar thermal energy storage.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...